
Received: 20 July 2018 Revised: 1 December 2018 Accepted: 20 January 2019

DOI: 10.1111/jcal.12348
AR T I C L E
Analysing computational thinking in collaborative
programming: A quantitative ethnography approach
Bian Wu1 | Yiling Hu1 | A.R. Ruis2 | Minhong Wang1,3
1Department of Educational Information

Technology, East China Normal University,

Shanghai, China

2Wisconsin Center for Education Research,

The University of Wisconsin‐Madison,

Madison, Wisconsin, USA

3KM&EL Lab, Faculty of Education, The

University of Hong Kong, Hong Kong, China

Correspondence

Bian Wu, East China Normal University, No.

3663, North Zhongshan Rd., Shanghai,

200062, China.

Email: bwu@deit.ecnu.edu.cn

Funding information

Humanity and Social Science Youth founda-

tion from the Ministry of Education of China,

Grant/Award Number: 16YJC880085; Peak

Discipline Construction Project of Education

from East China Normal University; Eastern

Scholar Chair Professorship Fund from

Shanghai Municipal Education Commission of

China, Grant/Award Number: JZ2017005;

Division of Research on Learning in Formal

and Informal Settings, Grant/Award Numbers:

1661036 and 1713110; Wisconsin Alumni

Research Foundation; Office of the Vice

Chancellor for Research and Graduate Educa-

tion at the University of Wisconsin‐Madison
J Comput Assist Learn. 2019;35:421–434.
Abstract

Computational thinking (CT), the ability to devise computational solutions for real‐life

problems, has received growing attention from both educators and researchers. To

better improve university students' CT competence, collaborative programming is

regarded as an effective learning approach. However, how novice programmers

develop CT competence through collaborative problem solving remains unclear. This

study adopted an innovative approach, quantitative ethnography, to analyze the

collaborative programming activities of a high‐performing and a low‐performing team.

Both the discourse analysis and epistemic network models revealed that across

concepts, practices, and identity, the high‐performing team exhibited CT that was

systematic, whereas the CT of the low‐performing team was characterized by

tinkering or guess‐and‐check approaches. However, the low‐performing group's CT

development trajectory ultimately converged towards the high‐performing group's.

This study thus improves understanding of how novices learn CT, and it illustrates a

useful method for modeling CT based in authentic problem‐solving contexts.
1 | INTRODUCTION

Computational thinking (CT)—the approach to solving authentic prob-

lems like a computer scientist or software engineer—is deemed a crit-

ical competence for 21st‐century knowledge workers. CT competence

is often developed through computer programming education in both

K‐12 and higher education contexts (Czerkawski & Lyman, 2015; Lye

& Koh, 2014), and collaborative work has long been recognized as an

important mechanism for developing CT (Lindsjørn, Sjøberg, Dingsøyr,

Bergersen, & Dybå, 2016). Especially for novice programmers, collab-

orative programming can offer opportunities to develop collective

understanding of computational problems, plan alternative computing

solutions, receive peer teaching, build collaborative knowledge, and

engage in authentic programming practices such as planning, coding,

monitoring, and testing (Kafai & Burke, 2013; Teague & Roe, 2008).
wileyonlinelibrary.co
Research on collaborative programming as a pedagogical

approach is extensive (see, e.g., Beck & Chizhik, 2013; Jehng, 1997;

Shadiev et al., 2014; Williams, Wiebe, Yang, Ferzli, & Miller, 2002).

However, most studies have examined only summative outcomes or

learners' perceptions, motivations, and engagement, with little focus

on the psychosocial process of collaborative programming and the

development of CT competence (Emurian, Holden, & Abarbanel,

2008; Maguire, Maguire, Hyland, & Marshall, 2014; Serrano‐Cámara,

Paredes‐Velasco, Alcover, & Velazquez‐Iturbide, 2014). There is thus

a lack of knowledge regarding the mechanisms through which novice

programmers develop CT competence in collaborative programming

contexts.

This study moves from a Piagetian perspective, or a focus solely

on individuals' programming ability (Lister, 2016; Teague & Lister,

2014), to a Vygotskian perspective, in which CT competence is
© 2019 John Wiley & Sons Ltdm/journal/jcal 421

https://orcid.org/0000-0003-0391-2630
mailto:bwu@deit.ecnu.edu.cn
https://doi.org/10.1111/jcal.12348
http://wileyonlinelibrary.com/journal/jcal

422 WU ET AL.
understood as socially developed and characterized by more than

merely computing knowledge and skills. In doing so, our goal was to

identify and model CT competence and CT development trajectories

in a collaborative programming context. To do so, this study adopted

a novel approach, quantitative ethnography, to identify and model

CT competence. By documenting the ways in which novice program-

mers develop CT competence, the results of this study could inform

the development of effective formative assessments, which would

enable computer educators to better facilitate novice programmers'

CT development.
2 | LITERATURE REVIEW

2.1 | CT and programming

The term computational thinking was first proposed by Wing (2006) to

represent the widely applicable attitudes and skills needed not only by

computer scientists and STEM professionals but also by everyone.

However, interpretation of what CT entails has been heavily debated.

For example, Chao (2016) regards CT as a problem‐solving process

involving computational design (i.e., understanding computational prob-

lems and designing computational solutions), computational practice

(i.e., solving the problems), and computational performance (i.e., testing

the solutions). This definition includes only the epistemic dimensions

of computational problem solving. Brennan and Resnick (2012), in

contrast, argue that CT includes computational concepts (i.e., core con-

cepts of CT), computational practices (i.e., programming practices as

one uses CT concepts), and computational perspectives (i.e., the values,

attitudes, and perception of performing CT practices). Although no

consensus has been reached on exactly what CT consists of, there is

general agreement that CT includes multiple components, not all of

which are cognitive. Therefore, CT competence should be conceptual-

ized as a multilayer structure, which includes hierarchical and

interrelated components.

Because of the publication of Wing's essay, there has been con-

siderable interest in incorporating CT skills into both K‐12 and higher

education (Czerkawski & Lyman, 2015), and computer programming

education is the most commonly applied approach (Lye & Koh,

2014). Previous studies on programming education that focused on

novice programmers identified critical competencies in programming,

including planning, program understanding, coding, and debugging.

For example, planning, such as writing programme comments in

advance or generating top‐down modularization, is an early step to

successful programming and a skill that novice programmers often lack

(Wellons & Johnson, 2011). The ability to provide a summary of a

piece of code rather than a line‐by‐line description—that is, a top‐

down approach to programming—suggests a higher level of compe-

tence (Lister, Simon, Thompson, Whalley, & Prasad, 2006); in contrast,

tinkering, or guess‐and‐check processes that reflect a bottom‐up

approach, can support iterative exploration of key elements in pro-

gramming (Berland, Martin, Benton, Petrick Smith, & Davis, 2013).

However, due to the opportunistic and incremental nature of novice
programming (Robins, Rountree, & Rountree, 2003), we still lack

comprehensive knowledge of CT competence development at this

programming learning stage.

Moreover, measurement of CT competence is most commonly

based on summative assessment, such as questionnaires (Korkmaz,

Çakir, & Özden, 2017) or test scores (Román‐González, Pérez‐

González, & Jiménez‐Fernández, 2017; Zhong, Wang, Chen, & Li,

2016), with little emphasis on formative assessment of programming

processes to foster CT competence development. Besides, such

assessments typically focus on individual outcomes. For example,

adopting Brennan and Resnick's (2012) three‐dimensional frame-

work, Kafai et al. (2014) assessed individual students' understanding

of core CT concepts. They found that remixing (i.e., including seg-

ments of existing code into their own design projects) played the

most prominent role in CT competence development. However, their

findings were constrained to individual learning, and the study

assessed performance in the three CT dimensions separately. They

suggested that future study should investigate the relations among

computing concepts, computing practice, and computing perspective.

Following this direction, Chao (2016) explored the interrelations

among computational practice, computational design, and computa-

tional problem‐solving performance to identify distinctive patterns

of programming learning using cluster analysis. However, this analy-

sis did not construe CT competence as developed both cognitively

and socially and thus did not account for the social dimensions of

learning.
2.2 | Collaborative programming

Collaborative programming is an instructional method in which a

group of students work together to accomplish programming tasks.

The instructional approach stems from cognitive and social construc-

tive theories that view learning in a group as a process of actively

and collaboratively constructing new knowledge based on prior

knowledge and social interaction (Kalaian & Kasim, 2014). The

approach also reflects the notion that cognition can be distributed

across a group of people, tools, and artifacts (Berland & Lee, 2011;

Mangalaraj, Nerur, Mahapatra, & Price, 2014).

Collaborative programming has long been regarded as an effective

way to support programming performance (Johnson & Johnson,

1999). Denner, Werner, Campe, and Ortiz (2014) argue that working

collaboratively is especially useful in terms of building CT competence

and computer programming knowledge for novice learners. Collabora-

tive programming can also help students develop a higher level of con-

fidence in their own problem‐solving abilities (Beck & Chizhik, 2013).

Other benefits of collaborative programming include more efficient

work, fewer defects in programming solutions, greater engagement,

and increased programming knowledge and skills, to name but a few

(Williams & Kessler, 2002). However, we still lack knowledge about

how group dynamics help coordinate different roles in collaborative

problem solving, establish shared understanding through conflict

negotiation, address the challenges of authentic programming tasks,

WU ET AL. 423
and foster the development of CT competence (Lister, 2016; Teague

& Lister, 2014).

In terms of analysing collaborative programming processes, two

challenges need further investigation. First, analysis of recorded logs

of programming can identify no more than the basic knowledge and

skills of CT (Wang & Hwang, 2012). The presence of a code element

in a programming artifact does not necessarily indicate a deep under-

standing of programming (Brennan & Resnick, 2012). To better exam-

ine deep learning, including computational practices and perspectives,

student could be asked to verbalize their thought processes while pro-

gramming (Ericsson & Simon, 1998), and their on‐screen programming

behaviour could be captured and analysed (Lye & Koh, 2014). Second,

different dimensions, such as cognitive, metacognitive, and social or

emotional factors, are often analysed separately without viewing them

as interrelated and co‐developed competences (Khosa & Volet, 2014;

Kwon, Liu, & Johnson, 2014). To investigate the development of CT

competence holistically, examining the connections among different

components of CT competence during collaborative programming is

needed. Shaffer (2012) argues that professional knowledge, skills,

practices, and perspectives are interconnected through an epistemic

frame, a particular way of framing, investigating, and solving problems

in some domain. Thus, one's expertise is characterized in part by how

the particular knowledge, skills, values, and other elements of the

domain are integrated, which manifests in the actions and interactions

of individuals in authentic problem‐solving contexts. Learning to adopt

the epistemic frame of a particular domain—in this case, computer

programming—ultimately fosters identity development, as students

shift from programming students to student programmers. Impor-

tantly, this process of identity development is facilitated by learning

environments in which students can take consequential action and

reflect on those actions with peers and more experienced others, in

authentic contexts. Making practice meaningful and showing the

applicability of domain competence can shape one's long‐term inter-

ests and personal identity in the target domain, which, in turn, can

motivate oneself to improve knowledge and skills through more delib-

erate practice (Foster & Shah, 2016).
2.3 | Quantitative ethnography

To analyse the processes of learning and expertise development in

collaborative programming, researchers need to study the interactions

of collaborating programmers (Lin & Liu, 2012). Leung (2002) suggests

that ethnographic accounts would contribute significantly to our

understanding of social learning processes such as collaborative pro-

gramming (see also Denner & Werner, 2007). However, traditional

ethnographic studies are based on laborious qualitative analyses and

thus cannot easily be conducted at scale. To address the difficulty of

analysing large amounts of ethnographic data to identify meaningful

patterns for both pedagogical and assessment purposes, Shaffer

(2017) developed a method known as quantitative ethnography.

Quantitative ethnography, which is described in detail in Shaffer

(2017), is a method that combines statistical inference with the
interpretive power of qualitative, grounded analysis. Importantly,

quantitative ethnography addresses a critical problem in assessing

complex and collaborative thinking. When students work in groups

to solve problems, researchers can assess either the work of the group

or the work of a specific member of that group. In collaborative

problem solving, however, it is impossible to understand the work of

an individual without accounting for the contributions of the other

members of the group.

Epistemic network analysis (ENA; Shaffer, Collier, & Ruis, 2016), a

quantitative ethnographic technique for measuring and visualizing

complex, collaborative thinking, addresses this challenge by modeling

learning in terms of the connections individual students make—in their

speech or actions—among key skills, knowledge, values, and decisions.

That is, it measures the development of an epistemic frame. Impor-

tantly, the connections in an ENA model can be between things that

the individual does independently, or between things that an individ-

ual does and things that other members of the group say and do.

ENA models learning as a network of connections, where each individ-

ual's network includes the relevant connections that he or she made in

the context of the activities of the group. This makes it possible to

assess collaborative problem solving without specifying explicitly a

correct sequence of problem‐solving steps.

In this study, we use ENA to model the complex, collaborative

thinking of students engaged in a collaborative programming project

in order to understand how novices develop CT competence in

collaborative contexts.
2.4 | Purpose and research questions

To understand how novice programmers learn to think like program-

mers when working collaboratively to develop software, this study

investigated novice programmers' collaborative programming pro-

cesses and strategies for computational problem‐solving enacted in

programming projects. Specifically, it explored the development of

individual CT abilities in relation to different kinds of collaborative

programming behaviour across the different development stages. To

this end, this study aimed to answer the following research questions:

RQ1: What CT patterns do novice programmers exhibit when

they collaborate on the development of a software application?

RQ2: Do novice programmers follow different trajectories of CT

competence development based on the collaborative programming

activities of their group?
3 | METHOD

3.1 | Participants

Forty‐seven year‐one students in an educational technology major

from a Chinese university attended CS1, introduction to C++

424 WU ET AL.
programming. They were all novice programmers with little or no pro-

gramming experience. The students were asked to form collaborative

programming groups with three to four students per group. This

exploratory study selected two groups for a case study. Each group's

work was recorded (screen‐capture), transcribed, coded, and analysed.
3.2 | Research design and procedure

In this course, the instructor designed four collaborative programming

projects as part of the course assignments. The projects were located

in the curriculum after the required programming knowledge, such as

branching, looping, and creating methods, had been taught via

lecturing and in‐class programming practice. In addition, the project

description was accompanied by a brief summary of relevant

programming knowledge. The projects were sequential, becoming

more complex as students learn more advanced programming and

problem‐solving techniques. The course had one classroom session

per week, and each project assignment lasted 4 weeks.

Each student group worked together on each project using the

same computer. These sessions occurred after class, and each project

required two to three sessions of 45 to 60 min each. Group members

were requested to play the roles of “driver,” “navigator,” and

“monitor”; that is, one member typed the code, one planned solutions,

and one watched for coding errors, respectively. Participants could

also rotate their roles during a session.

Figure 1 briefly summarizes the two projects analyzed in this

study. The first project asked students to develop a text‐based fish

pond simulation. The pond, fish, bait, and fishing hook were displayed

as text characters on the console. All these objects in the fish pond

were moving in a required pattern; for example, four fishes moving

from the left edge of the fish pond to the right edge horizontally, then

appearing again on the left edge, like the pond was wrapped around.

The learning goal of the first project was to improve students'

procedural‐oriented programming ability and fundamental knowledge

about basic control structures such as loops and conditions, primitive

data types, strings, and multidimension arrays, as well as defining

and calling custom methods.

In the second project, the students were asked to create a graph-

ical user interface (GUI) version of fish pond. All the objects within this
FIGURE 1 Interface of project 1 (left) and project 2 (right) [Colour figure
microworld were no longer characters but became images in a win-

dow. Further, user interaction was added; for example, mouse clicking

in the window will cause the fish hook to appear in the same place as

the mouse was clicked. The learning goal of the second project was to

reorganize a real‐time simulation into a more general form by making

use of instantiable objects of predefined types. Students were also

required to apply provided classes and objects for GUI programming

and a callback method to facilitate human interactions with simulation.
3.3 | Data collection and coding scheme

We collected conversation data from the two selected groups during

their collaborative programming sessions. Camtasia, a screen cast

software, was used to record the programming process in visual studio

2015 IDE environments for C++ programming, group conversation

during collaborative programming, and webcam video of all group

members. Thus, the programming actions are coordinated with the

groups' problem‐solving conversations. The video recordings were

used for speaker recognition and to identify emotions and gestures.

We collected 473 min of video in total.

To code the verbal interactions of the groups, the transcription of

interaction was divided into conversational turns, defined as a change

of speaker. We obtained 1,533 conversational turns from the audio–

video data. Each conversational turn could be coded with one or more

codes. Data were coded by two independent researchers, resulting in

a good strength of agreement (kappa value for each code above 0.8).

Differences in scoring were resolved through discussion.

We adapted Brennan and Resnick's (2012) three‐dimension CT

framework as a coding scheme to analyze the collaborative conversa-

tions (seeTable 1). The first dimension (computational concepts) refers

to the elements such as sequences, loops, conditionals, operators, and

data structures that are present in many programming languages; the

second dimension (computational practice) refers to activities, such

as being incremental and iterative, reusing and remixing, testing and

debugging, as well as modularizing and abstracting, that designers

use to create programs; and the third dimension (computational iden-

tity) focuses on the perception of computing, that is, how students see

themselves within the computing field and links to their future career,

such as expressing and questioning.
can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com

TABLE 1 Coding scheme of computational thinking

Dimension Codes Definition

Concepts Sequence (C. Sequence) A series of individual steps or instructions that can be executed by a computer
Loops (C. Loop) A mechanism for running the same sequence multiple times
Conditions (C. Condition) the ability to make decisions based on certain conditions, which supports the expression

of multiple outcomes
Operators (C. Operator) Provide support for mathematical, logical, and string expressions, enabling the

programmer to perform numeric and string manipulations
Data (C. Data) Concerns about data types and storing, retrieving, and updating values of data

Practice Incremental and Iterative (P. Increment and
Iterative)

Identifying key concepts in programming, planning, and implementing design are
adaptive and iterative process, decomposing complex tasks into simple subtasks and
goals.

Testing and Debugging (P. Test and Debug) addressing programming problems and dealing with unexpected programming outcomes
Reusing and Remixing (P. Reuse and Remix) Finding ideas and code to build upon, creating things much more complex than students

could have created on their own
Abstracting and Modularizing (P. Abstract and

Module)
Recognizing patterns and generalizing from specific instances

Identity Expressing (I. Express) See computation as more than something to consume, computation as a medium for
self‐expression

Questioning (I. Question) Negotiate the realities of the technological world regarding computing affordances and
limitations

WU ET AL. 425
3.4 | Data analysis approach

To answer RQ1 (What CT patterns do novice programmers exhibit

when they collaborate on the development of a software application?),

the study employed discourse analysis (Gee, 2005) on the excepts of

conversations during different stages of collaborative programming.

To provide statistical warrants that support the qualitative discourse

analysis and answer RQ2 (Do novice programmers follow the different

trajectories of CT competence development based on the collabora-

tive programming activities of their group?), we then conducted an

ENA on all verbal interactions of the two groups.

The process of creating epistemic network models is explained in

detail elsewhere (Shaffer, 2017; Shaffer et al., 2016; Shaffer & Ruis,

2017), but in brief, ENA uses a sliding window to construct a network

model for each turn of talk in the data. Connections in the network are

defined as the co‐occurrence of codes in the current turn of talk and

codes within the recent temporal context, which we defined as each

line plus the four previous lines based on our qualitative analysis of

the data (a window size of 5 turns of talk). Co‐occurrence of elements

in a given window of discourse is a good indicator of socio‐cognitive

connection (Landauer, McNamara, Dennis, & Kintsch, 2007; Lund &

Burgess, 1996; Wu, Wang, Spector, & Yang, 2013). The resulting net-

works were aggregated for all turns of talk for each unit of analysis

(individual in a group), such that each individual was represented by

a vector whose elements were the number of co‐occurrences

between each pair of codes for that person. We normalized the matrix

of co‐occurrence vectors to account for variation in the amount of talk

between individuals and performed a dimensional reduction via

singular value decomposition.

Networks were visualized using two coordinated representations:

(a) plotted points representing each individual's network, where the

point indicates the location of an individual's network in the projected

space (or ENA space) created by the first two dimensions of the

dimensional reduction and (b) a weighted network graph in which

the nodes correspond to codes, and the thickness of the edges is
proportional to the relative frequency of connection between two

codes. The positions of the network graph nodes are fixed across all

networks in the model, and those positions are determined by an opti-

mization algorithm that minimizes the difference between the plotted

points and their corresponding network centroids. Thus, points that

are located toward the extremes of a dimension have network graphs

with strong connections between nodes located on those extremes.

As a result, dimensions in ENA space distinguish individuals (or collec-

tively, groups) in terms of connections between codes whose nodes

are located at the extremes of the dimensions. All analyses were con-

ducted with the ENA web tool (http://app.epistemicnetwork.org).
4 | RESULTS

Groups' programming performance was determined through assess-

ment of all groups' programming artifacts based on four criteria, includ-

ing code correctness, function completeness, code cleanness, and

design creativity, with each criterion scored from 0 to 5 points. The full

scorewas 20, and themean score of all 15 groupswas 14.50 (SD = 4.19).

We divided groups into high‐performing and low‐performing condi-

tions based on whether their score was greater than or lower than

the mean, respectively. For this exploratory study, two groups were

selected for both quantitative and qualitative analysis, with one from

high‐performing groups (HighGp; total score 18.6) and the other from

the low‐performing groups (LowGp; total score 13.84). The HighGp

included three male students, called GZR, ZMZ, and LYX. The (LowGp)

included two male students and one female student, called WXL, ALM,

and CJM (female). All names are pseudonyms in this study.

For each group, we analysed qualitatively three tasks, that is, the

text‐based fish pond printout, making code reusable, and the GUI‐

based fish pond simulation, for each group during two different

projects. We explored collaborative programming behaviours using

discourse analysis first and then conducted a quantitative ethno-

graphic analysis based on our qualitative findings.

http://app.epistemicnetwork.org

426 WU ET AL.
4.1 | Text‐based fish pond printout

The first task in the first project asked students to print a fish pond with

tilde characters representing water in the size of 32 columns and eight

rows on the console (see Figure 1 left). The HighGp planned to complete

the task in a top–down way, from computing expressions to definition of

the data and method, and then to knowledge about method parameters

and the scope of the variables (seeTable 2). First, GZR (#1) and LYX (#2)

identified the task goal and decomposed the goal into two computing

steps, that is, pond generation and pond printout. Then, ZMZ (#3) asked

how to achieve the first step with programming methods. They then

began discussing what they knew about methods and calling (i.e., com-

puting concepts), followed by more details of how the method can
TABLE 2 High‐performing group discourse in text‐based fish pond visua

Seq. # Utterance

1 GZR We need to define fish pond using an array and create a funct
water.

2 LYX We need to fill water into fish pond first and then print it ou

3 ZMZ Where should we put this function, inside the main function

4 LYX You can define this function outside the main function and t

5 GZR Let us write this fill Fish Pond function first. We need to thin
parameters it needs.

6 LYX First, the array should be one of them, and then water should
also a parameter, is not it?

7 GZR So how many parameters should we need?

8 ZMZ Can we define the fish Pond array just inside this function in
function?

9 GZR Main function must also have an array.

10 LYX The array is needed globally.

11 GZR Because you need to output in the main function.

TABLE 3 Low‐performing group discourse in text‐based fish pond visua

Seq. # Utterance

1 ALM Then we need to fill the array with water.

2 WXL Yes, we will define an array. Because the array contains c
char‐type array, right?

3 CJM A very big size...

4 ALM The pond size is 32*8 and we need to fill it with water.

5 WXL Yes, we fill the water first and then covered using fish a
loop to fill with water.

6 ALM How do you plan to fill the pond using for loop?

7 CJM Two nested for loop.

8 WXL Just output it using printf, something like that. We use t

9 CJM First loop is row or column?

10 WXL No difference, just cover every single row and column. H
column are all numbers, now we need...

11 ALM It's just the change of address, we need to fill somethin
keep assigning water to i and j. right?

12 WXL No. we need to print water in the for loop. We do not as
place in the array. We fill each place with water and w
changed accordingly.
manipulate data and in what scope (i.e., computing practice). Overall,

the HighGp built connections between I. Express, P. Abstract and Mod-

ule, C. Data, and C. Sequence at this stage.

In contrast, the LowGp struggled with the technical implementa-

tion of computing expressions, such as how to apply the concept of

a loop to realize the fish pond, at an early stage of programming (see

Table 3). They failed to differentiate the computing difference

between variable assignment and printout, for example, WXL (#8)

and WXL (#12). They took some time to consolidate their prior con-

ceptual knowledge of nested loops, for example, WXL (#8), CJM

(#9), and WXL (#10), and two‐dimensional arrays, for example, ALM

(#11) and WXL (#12). Therefore, the LowGp mainly developed

connections between I.express and C. Data or C.Loop.
lization

Codes

ion to fill the fish pond with C.Data, P.Abstract&Module, I.Express

t. C.Sequence, I.Express

or outside it? C.Sequence, P.Abstract&Module

hen call it inside. C.Sequence, P. Abstract&Module

k about how many P. Abstract&Module

be a char type data which is C.Data, P.Abstract&Module

P.Abstract&Module

stead of in the main C.Data, P.Abstract&Module

C.Data, P.Abstract&Module

C.Data

P.Abstract&Module

lization

Codes

I.Express

haracter, so we need to define a C.Data

C.Data

C.Data, I.Express

t some place. Now we use for I.Express, C.Loop

I.Express, C.Loop

C.Loop

he first for loop to print the row C.Loop

C.Loop

ere is the problem, our row and C.Loop, C.Data

g into this address. I suggest we C.Data, C.Operator

sign it to i and j, but a[i][j], some
hen i and j change, the place also

C.Data, C.Operator, C.Loop

WU ET AL. 427
4.2 | Make code reusable

During project one, the idea of abstraction was introduced so that stu-

dents were required to revise their programme to be more general and

robust. The HighGp, therefore, created three functions to place the

fish, bait, and fish hook in the pond, respectively. Then, they thought

it was too redundant and were trying to figure out how to combine

these three functions into a more general method (see Table 4). They

shared a common goal of creating a general method based on previous

codes, for example, LYX (#1) and ZMZ (#2) but came up with different

plans, reflecting their different understandings of abstraction. After

GZR (#6) pinpointed incongruities in the other two members' plans,

ZMZ (#7) realized the difference and agreed with LYX's solution. After

reaching this shared understanding of abstraction, LYX (#8) further
TABLE 4 High‐performing group in make code reusable

Seq. # Utterance

1 LYX The placeFishInPond function seems the most complex. How
function based on this one?

2 ZMZ Hmmm, I think it makes sense. let us do it. We need to write th
fish, one about baits and one about fish hook. let us check w
in the fish part.

3 LYX Regarding the placing fish section, we determine the position o
step in the second loop to print the whole fish on the scree
here. Because baits and fish hook both are represented by on
the second loop only run one time.

4 ZMZ That is to say we actually do not need the second loop for th

5 LYX It does not mean we do not need it. We just need to define a v
of repeat in the second loop so that we can change accordi
object.

6 GZR I think you two have different thoughts. ZMZ means to combi
by copying the code of three and paste together, while LYX
three functionalities using one method by adjusting the valu
which one we should choose?

7 ZMZ I think LYX's solution is more reasonable and simpler. Mine is

8 LYX So we should find out what are the differences among these
them.

TABLE 5 Low‐performing group in make code reusable

Seq. # Utterance

1 ALM We need to separate the code into different part, such as
movement, right?

2 CJM We can separate the code about fish pond first.

3 WXL Now we need to modify our code. Here we do not need t

4 ALM Why?

5 WXL Because they do not exist in this encapsulated method.

6 CJM Now we only need to fill fish pond. We only need to assign
water.

7 WXL And we need to be careful we should change all names of

8 ALM To pass arguments to the method

9 WXL We named this parameter water, so we should change all
water. We should encapsulate and revise these method
proposed to identify and address differences among methods so as to

define a general method. Therefore, the major connections built by the

HighGp during this stage were within computing practice (i.e., P. Incre-

ment and Iterative, P. Reuse and Remix, and P. Abstract and Module).

Unlike the HighGp's programming strategy, the LowGp first wrote

all source code in the main function including object placement, object

movement, and object overlapping detection. Then, they spent more

time rewriting their code using the bottom–up method in this encap-

sulation phase (see Table 5). For example, WXL (#7) engaged primarily

in remixing rather than abstraction, which is less efficient and more

error prone. WXL (#3) and WXL (#9) kept tinkering with the whole

programme to delete useless temporal variables and modify the name

of variables. The LowGp thus primarily made the connection between

P. Increment and Iterative and C. Data.
Codes

about we adjust the new P.Increment&Iterative

ree sections, one is about
hat needs to be modified

P.Reuse&Remix, P.Increment&Iterative

f fish tail first and add one
n. We can do the similar
e character, that is to say,

I.Express,
C.Loop,
C.Data

e remaining two sections. P.Reuse&Remix,
C.Loop

ariable to represent times
ng to the length of an

C.Data,
C.Loop,
P.Abstract&Module

ne three function into one
's point is to achieve the
e of its parameters. So

P.Reuse&Remix, P. Abstract&Module

more redundant. P.Abstract&Module

three and try to address P.Abstract&Module

Codes

fish, fish pond, fish hood, and P.Abstract&Module

P.Reuse&Remix

o declare variables x, y, and m. P.Increment&Iterative, C.Data

P.Increment&Iterative

the element of the array with I.Express, C.Data

the same variables here. P.Increment&Iterative

C.Data

variable a in the method to
s one by one.

C.Data, P.Increment &Iterative

428 WU ET AL.
4.3 | GUI‐based fish pond simulation

In the second project, students were required to change the text‐

based solution into a GUI‐based fish pond simulation. To add more

entertaining features to this game, GZR in the HighGp proposed to

change the hook movement from constant speed into acceleration.

The following excerpt shows how they debug a problem with achiev-

ing this goal (see Table 6). Initially, they focused on the data operation

mechanism, for example, LYX (#2), ZMZ (#6), LYX (#7), ZMZ (#10),

LYX (# 11), and GZR (#12), and adopted a hypothetico‐deductive

approach to troubleshoot the problem, for example, LYX (#2), LYX

(#5), and ZMZ (#6). Even though they were lacking key debugging

skills, such as breakpoints and detailed conceptual knowledge of

graphics rendering, their reasoning and argumentation strategies

helped build these competences. That is to say, they were developing

connections between other CT components and P. Test and Debug.

The LowGp had also developed new knowledge going into the

second project (see Table 7) by examining programming artifacts in

the first project, for example, WXL (#1). They successfully aligned their

practice of class definition and object calling with object‐oriented

thinking in programming, for example, WXL (#3), WXL (#5), and CJM

(#6). In other words, they began re‐planning their programme

from the top–down and made connections between computing

practice (P.Abstract and Module and P. Increment and Iterative) and

computing identity (I.Express and I.Question).
TABLE 6 High‐performing group in graphical user interface‐based fish p

Seq. # Utterance

1 ZMZ It moves very very slow, does not it?

2 LYX Anyhow, dy should be a positive number, because it mus
think it might because we define dy as an integer. Su
500 is 0.1 so that dy is zero. And it will keep zero wh

3 GZR Can we change it to double?

4 LYX Then it also affects the following integer array of hook'

5 LYX Can we use double type to express pixel on the screen

6 ZMZ What about we do not divide dy by 500?

7 LYX This is the formula for updating hook speed. If we multip
move very very fast.

8 ZMZ We can give it a try.

9 GZR I am afraid double type data will increase computation
memory space. But let us put it aside and try using d

10 ZMZ They move now! But very very slow. I still think we can
say, 250.

11 LYX Well, 500 is to make sure the final speed will not be too
the top. If the final speed is still very slow. We can cha
it seems so...

12 GZR Try 50. I think we can change to 50 and return to use i

13 LYX Let us run it.

14 GZR Looks much better.

15 ZMZ But it seems a little bit difficult.

16 GZR Difficulty makes player feels more fun. I think the effec
4.4 | Epistemic network modelling

To corroborate the above qualitative findings and further explore the

differences between the two groups' CT competence, we conducted

an ENA analysis on the coded conversation data. As shown in

Figure 2, each point is the centroid of a students' epistemic network

of CT competence; the squares are the means of all group members'

centroids, and the black boxes are the 95% confidence intervals for

the means. The first dimension (X) accounted for 34% of the variance

in the data. The second dimension (Y) accounted for 27% of the vari-

ance in the data. To compare the means statistically, we computed an

independent‐samples t test. The difference on the first dimension was

statistically significant: MeanHighGp = 0.24, MeanLowGp = −0.24,

t = 4.14, p = 0.01, Cohen's d = 3.38. There was no significant

difference on the second dimension.

Because each network (Figure 2) and the corresponding mean

networks (Figure 3) were in the same projection space, we can inter-

pret the meaning of the first and the second dimensions of this space

based on the node positions in Figure 3. As we can see, P. Reuse and

Remix and P. Increment and Iterative are located on the left side of the

projection space; these codes correspond to bricolage, a process

described by Turkle and Papert (1990) as an interaction between pro-

grammer and programme, navigating through missteps and planning

little more than a step ahead. P. Test and Debug and C. Loop are

located on the right side of the projection space, and these codes
ond simulation

Codes

P.Test&Debug

t move upward. But it does not. I
ppose it is 50, which divided by
ich means it will not move.

C.Data,
C.Operator,
I.Express

C.Data

s position. C.Data

? C.Data,
I.Question

C.Operator

ly the coefficient by 10, it might C.Operator,
I.Express

P.Test&Debug

dramatically and take up a lot of
ouble type first.

C.Data,
I.Question

change the coefficient smaller, P.Test&Debug, C.Operator

fast. Let us wait to see it reaches
nge the coefficient then. Hmmm,

P.Test&Debug, I.Express,
C.Operator

nteger. C.Operator,
C.Data

P.Test&Debug

P.Test&Debug

I.Express

t is great. I.Express,
I.Question

FIGURE 2 Students' epistemic networks of computational thinking competence in projection space. The group that generate high‐quality
programming artifact (in blue) and low‐quality one (in red) [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 7 Low‐performing group in graphical user interface‐based fish pond simulation

Seq. # Utterance Codes

1 WXL Yes, we have object generation, object placement, and object movement,
right? We can call this method from outside. If we hold procedure‐
oriented thinking, we can put all codes inside ofApp, but if we want to
adopt object‐oriented thinking, we can put them into an object. We
declare these functions with a public access and then call them from
another cpp file

P.Reuse&Remix, P.
Abstract&Module

I.Question

2 ALM OK. So we have a moveFish, how to write this method? P.Abstract&Module

3 WXL We usually declare a method in the head file and put definition in the source
file. moveFish has no return value, so it's void. And it has no argument to
pass, it just changes the position.

P.Abstract&Module

4 ALM Anything else?

5 WXL We also need to use those object's variables. As our instructor said, an
object's property should keep private, so other object cannot access
directly. So we need to define method to achieve this. Here in this project,
we need methods to get position values of fish, baits and hook.

P.Increment&Iterative, I.
Question, P.
Abstract&Module, I.
Express

6 CJM What is the difference between these methods and moveFish? P.Abstract&Module

7 WXL I think there are two differences. moveFish has no return value, but here we
need to return double‐type position value. Second, moveFish is for moving
operation without passing arguments. But here, for example, getFish, we
need an parameter to pass the fish number so that we can get the position
value of a specific fish.

P.Abstract&Module, P.
Increment&Iterative

WU ET AL. 429
correspond to tracing interactive programme code, a fundamental skill

for novice programmers to develop (Lister, 2016). Hence, the first (X)

dimension can be interpreted as the bricolage versus tracing dimen-

sion. Similarly, we can interpret the second (Y) dimension as the

construction versus reasoning dimension because the CT codes to

the top and the bottom of the space are related to creating computa-

tional artifacts (C.Data, I. Express and P. Increment and Iterative) and

operational reasoning (P.Reuse and Remix, C. Loop, and C.Operation;

Lister, 2011; Wilkerson‐Jerde, 2014), respectively.

To interpret the statistical difference between these two groups,

we plotted their mean networks (see Figure 3). The HighGp has more

connections in the upper right area of the projection space, reflecting

the stronger connections to P. Test and Debug, and C. Loop, whereas

the LowGp has more connections in the lower left area of the
projection space, reflecting stronger connections to I. Question,

P. Reuse and Remix, P. Increment and Iterative, and C. Sequence.

Both groups had strong connections to I. Express. In other words,

the HighGp focused more on computing artifact construction and

code tracing whereas the LowGp focused more on algorithmic

reasoning and code bricolage.

Next, we examined students' competence development by

analysing the trajectories of their epistemic networks across different

stages of two sequential projects. The HighGp completed the first pro-

ject and the second project both in two sessions, whereas the LowGp

completed the first project in three sessions and the second one in

two sessions. The time spent on each project by two groups are

reported in Table 8. These differences in time allocation for the

programming projects were determined by the students.

http://wileyonlinelibrary.com

FIGURE 3 Mean network of low‐performing group (in red) and high‐performing group (in blue) and the difference network [Colour figure can be
viewed at wileyonlinelibrary.com]

FIGURE 4 Trajectory of group members' network model in a
projection space [Colour figure can be viewed at wileyonlinelibrary.
com]

430 WU ET AL.
The network trajectory of the HighGp's members consists of four

points, and the trajectory of the LowGp's members consists of five

points, with each point representing the centroid of the CT compe-

tence network at a certain programming stage. Figure 4 shows that

the two groups had different trajectories in CT competence develop-

ment, whereas members of each group had relatively similar trajecto-

ries. Overall, the two groups' trajectories were generally convergent.

Although two groups' initial CT competence networks were quite

different, with the HighGp characterized by stronger connections to P.

Abstract and Module and the LowGp characterized by stronger

connections to P. Reuse and Remix, the trajectories showed the

convergence of these two groups towards similar CT competence

networks, that is, networks characterized by more balanced connec-

tions among different CT components.

By plotting mean networks for each point in this projection space

as shown in Figure 3, we explored the changes in students' epistemic

networks to see how often different CT components connected with

each other at different stages of programming learning comparatively.

Here, we selected GZR and LYX in HighGp and CJM in LowGp to

compare novice programmers' CT competence development both

between and within groups. Table 9 shows their individual networks

at the first two sessions and the fifth session of programming.

In the first stage, CJM from the LowGp had strong connections

between C. Data, P. Reuse and Remix, and P. Test and Debug, whereas

both GZR and LYX in the HighGp had strong connections between P.

Abstract and Module, C. Data, I. Express, and other components. This

suggests that the HighGp focused more on top–down approaches to

framing the problem, data representation, and computing planning,
TABLE 8 Time spent on different sessions of two sequential projects by

Project 1

Sesssion 1 (min) Session 2 (min)

HighGp 40 67

LowGp 48 58

Note. HighGp: high‐performing group; LowGp: low‐performing group.
whereas the LowGp used a trial‐and‐error approach of data manipula-

tion and reusing.

In the second stage, GZR and LYX exhibited stronger connec-

tions among C. Data, I. Express, and P. Abstract and Module as well

as more connections to C. Operation. Besides, new components like

I. Question and P. Reuse and Remix had emerged in their networks,

respectively. Meanwhile, new components like P. Increment and
two groups

Project 2

Session 3 (min) Session 4 (min) Session 5 (min)

‐ 64 45

36 47 68

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
http://wileyonlinelibrary.com

TABLE 9 Computational thinking competence networks in different stages for students from two groups

Stage1 Stage2 Stage5

GZR in HighGp

LYX in HighGp

CJM in LowGp

WU ET AL. 431
Iterative, C. Condition, and I. Express emerged in CJM's network.

The similarity between CJM's network and the HighGp members'

thus increased.

In the fifth stage, all three students' network had more connec-

tions with I. Express, P. Test and Debug, P. Reuse and Remix, and P.

Increment and Iterative, which suggested that both HighGp and

LowGp developed more comprehensive CT competence networks.

For instance, both groups were learning how to reuse predefined

functions or improve programmes to express new design (i.e., connec-

tions between I. Express, P. Reuse and Remix, and P. Increment and

Iterative) and how to debug unexpected variable outcomes (i.e., con-

nections between P. Test and Debug and C.Data).
5 | DISCUSSION

This study examined how novice programmers develop CT compe-

tence by interacting with each other during collaborative programming

activities. The findings from our qualitative discourse analysis revealed

that the HighGp adopted a top–down perspective. They planned con-

ceptual and expressive design first and then analytically achieve this

design goal using computational artifacts. In contrast, the LowGp

adopted a bottom–up perspective at the beginning but transformed

to a top‐down approach by the end. They tended to consider the

affordances and limitations of technical implementation to search for

a better solution and to refine their software design. Whereas
previous studies of novice–expert difference suggested that program-

ming experts use top–down strategies (Robins et al., 2003), our study

revealed that CT competence can be developed in collaborative

contexts even when students begin with a bottom–up approach. This

research thus suggests that collaborative programming in project‐

based learning contexts can help novice learners develop CT

competence via heterogeneous trajectories.

Our quantitative modelling of the groups CT, using epistemic

network trajectories as well as individual networks at different time

periods, help deepen our understanding of CT competence develop-

ment in high and LowGps. First, the group mean networks provide

a holistic view in terms of what competence components were

strengthened more for different groups. As we can see from the dif-

ference network in Figure 3, the HighGp developed more skills in inte-

grating different data type definition and manipulation with looping

structure application to formulate complex functions and kept sharp-

ening debugging techniques during programming (i.e., tracing skills).

On the contrary, the LowGp, during the whole programming process,

focused more on the sequence of their programme and kept reusing

their code to make minor change (i.e., tinkering activity). They also

kept questioning the expected outcomes without developing the

debugging technique. These findings were consistent with previous

studies that tracing skills reflect an intermediate level of programming

(Lister, Fidge, & Teague, 2009), whereas tinkering behaviour often

suggests an ad hoc trial‐and‐error approach in novice programming

(Berland et al., 2013).

432 WU ET AL.
Second, the two groups' network trajectories show different com-

petence development pathways. For the HighGp, their CT network

changed from focusing on function‐level and class‐level abstraction

and modularizing at the beginning to creating and applying different

types of data to achieve their expressive design and finally to keep

improving their programming artifacts. The LowGp emphasized

reusing and remixing at the very beginning, which suggests that they

failed to make plans before programming and that they did not under-

stand or think deeply about both the project problem and drafted

code. They continued to question the requirement of the project

and even the functionality of the programming environment regard-

less of syntax or logical problems in their code. However, by the end

of the programming stage, the LowGp presented similar CT compe-

tence patterns to the HighGp s, which indicates that their CT compe-

tence developed through a different pathway. The trajectory of both

groups reflected their heterogeneous CT competence patterns at the

beginning but evolved towards convergence. This finding corroborates

the argument that programming ability is something that is learned

rather than something innate (Robins et al., 2003; Teague & Lister,

2014) and further suggests that students who struggle to learn

programming can also develop their CT competence through

collaborative learning.

Third, a closer analysis of individual networks across different

programming stages offered detailed instances of CT competence

development trajectories. This study reveals that students in the

LowGp changed from debugging problems by reusing data and loop

structure to reusing code to achieve incremental tasks of computing

expression, whereas the HighGp's students changed from applying

fundamental concepts to realize computational expression through

abstraction to more balanced integration of computing expression,

debugging, reusing, and iteration of programmes. These epistemic net-

work findings provide statistical warrants for our discourse analysis

results and contribute to our understanding of heterogeneous CT

development trajectories between and homogeneous trajectories

within these two groups.
6 | CONCLUSIONS

This study employed an innovative quantitative ethnography approach

to provide evidence of differences in CT competence between high

and LowGp s as well as their convergent development trajectories in

collaborative programming, the results of which corroborates our qual-

itative findings from group discourse analyses. The study suggests that

quantitative ethnography is a promising approach for understanding

and modeling CT competence and its development. The method also

addresses the challenge of inferring individual students' development

of CT competence from collaborative learning, particularly when there

is no knowledge about how professional expertise is developed in a

specific domain nor about ways to separate individual performance

from joint activities (Enyedy & Stevens, 2014; Lajoie, 2003).

However, this exploratory study also suffered from some limita-

tions. First, the codes underlying the three dimensions of CT as
proposed by Brennan and Resnick (2012) were adapted in this study

to fit the designed programming project content, which may be differ-

ent if they were applied to other programming contexts, such as pro-

jects in using thread and database techniques. This is, of course,

beyond the novice level of programming, and adjustment of the cod-

ing would likely be necessary. Second, we only selected two groups

and analysed their collaborative programming in two projects. Due

to the small sample size, the model created from this study would

not necessarily generalize to other contexts. In future study, we will

increase our sample size and extend to other CT development con-

texts even without programming.
ACKNOWLEDGEMENTS

This work was funded in part by the Humanity and Social Science

Youth foundation from the Ministry of Education of China (Grant

Number 16YJC880085), the Peak Discipline Construction Project of

Education from East China Normal University, Eastern Scholar Chair

Professorship Fund from Shanghai Municipal Education Commission

of China (Award Number JZ2017005), the National Science

Foundation (Grant Number DRL‐1661036, DRL‐1713110), the

Wisconsin Alumni Research Foundation, and the Office of the Vice

Chancellor for Research and Graduate Education at the University of

Wisconsin‐Madison, USA. The opinions, findings, and conclusions do

not reflect the views of the funding agencies, cooperating institutions,

or other individuals. The authors also appreciate Prof. David

Williamson Shaffer for his valuable comments on this manuscript.
ORCID

Bian Wu https://orcid.org/0000-0003-0391-2630

REFERENCES

Beck, L., & Chizhik, A. (2013). Cooperative learning instructional methods

for CS1: Design, implementation, And Evaluation. ACM Transactions

on Computing Education, 13(3), 10–21.

Berland, M., & Lee, V. R. (2011). Collaborative strategic board games as

a site for distributed computational thinking. International Journal of

Game‐Based Learning, 1(2), 65–81. https://doi.org/10.4018/

ijgbl.2011040105

Berland, M., Martin, T., Benton, T., Petrick Smith, C., & Davis, D. (2013).

Using learning analytics to understand the learning pathways of novice

programmers. Journal of the Learning Sciences, 22(4), 564–599. https://
doi.org/10.1080/10508406.2013.836655

Brennan, K., & Resnick, M. (2012). New frameworks for studying and

assessing the development of computational thinking. Paper presented

at the proceedings of the 2012 annual meeting of the American

Educational Research Association, Vancouver, Canada.

Chao, P. Y. (2016). Exploring students' computational practice, design and

performance of problem‐solving through a visual programming

environment. Computers & Education, 95, 202–215. https://doi.org/
10.1016/j.compedu.2016.01.010

Czerkawski, B. C., & Lyman, E. W. (2015). Exploring issues about computa-

tional thinking in higher education. TechTrends, 59(2), 57–65. https://
doi.org/10.1007/s11528‐015‐0840‐3

Denner, J., & Werner, L. (2007). Computer programming in middle school:

How pairs respond to challenges. Journal of Educational Computing

https://orcid.org/0000-0003-0391-2630
https://doi.org/10.4018/ijgbl.2011040105
https://doi.org/10.4018/ijgbl.2011040105
https://doi.org/10.1080/10508406.2013.836655
https://doi.org/10.1080/10508406.2013.836655
https://doi.org/10.1016/j.compedu.2016.01.010
https://doi.org/10.1016/j.compedu.2016.01.010
https://doi.org/10.1007/s11528-015-0840-3
https://doi.org/10.1007/s11528-015-0840-3

WU ET AL. 433
Research, 37(2), 131–150. https://doi.org/10.2190/12T6‐41L2‐6765‐
G3T2

Denner, J., Werner, L., Campe, S., & Ortiz, E. (2014). Pair programming:

Under what conditions is it advantageous for middle school students?

Journal of Research on Technology in Education, 46(3), 277–296.
https://doi.org/10.1080/15391523.2014.888272

Emurian, H. H., Holden, H. K., & Abarbanel, R. A. (2008). Managing pro-

grammed instruction and collaborative peer tutoring in the classroom:

Applications in teaching Java™. Computers in Human Behavior, 24(2),

576–614. https://doi.org/10.1016/j.chb.2007.02.007

Enyedy, N., & Stevens, R. (2014). Analyzing collaboration. In R. K. Sawyer

(Ed.), The Cambridge handbook of the learning sciences (pp. 128–150).
New York, NY: Cambridge University Press. https://doi.org/10.1017/

CBO9781139519526.013

Ericsson, K. A., & Simon, H. A. (1998). How to study thinking in everyday

life: Contrasting think‐aloud protocols with descriptions and explana-

tions of thinking. Mind, Culture, and Activity, 5(3), 178–186. https://
doi.org/10.1207/s15327884mca0503_3

Foster, A., & Shah, M. (2016). Examining game design features for identity

exploration and change. Journal of Computers in Mathematics and

Science Teaching, 35(4), 369–384.

Gee, J. P. (2005). An introduction to discourse analysis theory and method

(2nd ed.). London: Routledge.

Jehng, J. C. J. (1997). The psycho‐social processes and cognitive effects of

peer‐based collaborative interactions with computers. Journal of

Educational Computing Research, 17(1), 19–46. https://doi.org/

10.2190/YHGG‐RVGP‐E60X‐N9N3

Johnson, D. W., & Johnson, R. T. (1999). Learning together and alone:

Cooperative, competitive, and individualistic learning (5th ed.). Boston:

Allyn & Bacon.

Kafai, Y. B., & Burke, Q. (2013). The social turn in K‐12 programming:

Moving from computational thinking to computational participation.

Paper presented at the 44th ACM technical symposium on computer

science education.

Kafai, Y. B., Lee, E., Searle, K., Fields, D., Kaplan, E., & Lui, D. (2014). A

crafts‐oriented approach to computing in high school: Introducing

computational concepts, practices, and perspectives with electronic

textiles. ACM Transactions on Computing Education, 14(1), 1–20.
https://doi.org/10.1145/2576874

Kalaian, S. A., & Kasim, R. M. (2014). Small‐group vs. competitive learning

in computer science classrooms: A meta‐analytic review. In R. Queiros

(Ed.), Innovative teaching strategies and new learning paradigms in

computer programming (pp. 46–63). Hershey, PA: IGI Global.

Khosa, D. K., & Volet, S. E. (2014). Productive group engagement in cogni-

tive activity and metacognitive regulation during collaborative learning:

Can it explain differences in students' conceptual understanding?

Metacognition and Learning, 9(3), 287–307. https://doi.org/10.1007/
s11409‐014‐9117‐z

Korkmaz, Ö., Çakir, R., & Özden, M. Y. (2017). A validity and reliability

study of the computational thinking scales (CTS). Computers in Human

Behavior, 72, 558–569. https://doi.org/10.1016/j.chb.2017.01.005

Kwon, K., Liu, Y. H., & Johnson, L. P. (2014). Group regulation and

social‐emotional interactions observed in computer supported

collaborative learning: Comparison between good vs. Poor Collabora-

tors. Computers & Education, 78, 185–200. https://doi.org/10.1016/j.
compedu.2014.06.004

Lajoie, S. P. (2003). Transitions and trajectories for studies of expertise.

Educational Researcher, 32(8), 21–25. https://doi.org/10.3102/

0013189X032008021

Landauer, T. K., McNamara, D. S., Dennis, S., & Kintsch, W. (2007).

Handbook of latent semantic analysis. Mahwah, NJ: Erlbaum.
Leung, W. C. (2002). Why is evidence from ethnographic and discourse

research needed in medical education: The case of problem‐based
learning. Medical Teacher, 24(2), 169–172. https://doi.org/10.1080/

01421590220125268

Lin, J. M. C., & Liu, S. F. (2012). An investigation into parent‐child
collaboration in learning computer programming. Journal of Educational

Technology & Society, 15(1), 162–173.

Lindsjørn, Y., Sjøberg, D. I., Dingsøyr, T., Bergersen, G. R., & Dybå, T.

(2016). Teamwork quality and project success in software develop-

ment: A survey of agile development teams. Journal of Systems and

Software, 122, 274–286. https://doi.org/10.1016/j.jss.2016.09.028

Lister, R. (2011). Concrete and other neo‐Piagetian forms of reasoning in

the novice programmer. Paper presented at the Thirteenth Australasian

Computing Education Conference.

Lister, R. (2016). Toward a developmental epistemology of computer pro-

gramming. Paper presented at the 11th workshop in primary and

secondary computing education.

Lister, R., Fidge, C., & Teague, D. (2009). Further evidence of a relationship

between explaining, tracing and writing skills in introductory program-

ming. Paper presented at the SIGCSE Bull.

Lister, R., Simon, B., Thompson, E., Whalley, J. L., & Prasad, C. (2006). Not

seeing the forest for the trees: Novice programmers and the SOLO tax-

onomy. Paper presented at the 11th annual SIGCSE conference on

innovation and Technology in Computer Science Education, Bologna, Italy.

Lund, K., & Burgess, C. (1996). Producing high‐dimensional semantic

spaces from lexical co‐occurrence. Behavior Research Methods, Instru-

ments, & Computers, 28(2), 203–208. https://doi.org/10.3758/

BF03204766

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of com-

putational thinking through programming: What is next for K‐12?
Computers in Human Behavior, 41, 51–61. https://doi.org/10.1016/j.
chb.2014.09.012

Maguire, P., Maguire, R., Hyland, P., & Marshall, P. (2014). Enhancing collab-

orative learning using paired‐programming: Who benefits? AISHE‐J: The
All Ireland Journal of Teaching and Learning in Higher Education, 6(2),

1411–14125.

Mangalaraj, G., Nerur, S., Mahapatra, R., & Price, K. H. (2014). Distributed

Cognition in Software Design: An Experimental Investigation of the

Role of Design Patterns and Collaboration. MIS Quarterly, 38(1),

249–274. https://doi.org/10.25300/MISQ/2014/38.1.12

Robins, A., Rountree, J., & Rountree, N. (2003). Learning and teaching pro-

gramming: A review and discussion. Computer Science Education, 13(2),

137–172. https://doi.org/10.1076/csed.13.2.137.14200

Román‐González, M., Pérez‐González, J. C., & Jiménez‐Fernández, C.

(2017). Which cognitive abilities underlie computational thinking?

Criterion validity of the Computational Thinking Test. Computers

in Human Behavior, 72, 678–691. https://doi.org/10.1016/j.

chb.2016.08.047

Serrano‐Cámara, L. M., Paredes‐Velasco, M., Alcover, C. M., & Velazquez‐
Iturbide, J. Á. (2014). An evaluation of students' motivation in

computer‐supported collaborative learning of programming concepts.

Computers in Human Behavior, 31, 499–508. https://doi.org/10.1016/
j.chb.2013.04.030

Shadiev, R., Hwang, W. Y., Yeh, S. C., Yang, S. J., Wang, J. L., Han, L., &

Hsu, G. L. (2014). Effects of unidirectional vs. reciprocal teaching

strategies on web‐based computer programming learning. Journal of

Educational Computing Research, 50(1), 67–95. https://doi.org/

10.2190/EC.50.1.d

Shaffer, D. W. (2012). Models of situated action: Computer games and the

problem of transfer. In C. Steinkuehler, K. Squire, & S. Barab (Eds.),

Games learning, and society: Learning and meaning in the digital age

https://doi.org/10.2190/12T6-41L2-6765-G3T2
https://doi.org/10.2190/12T6-41L2-6765-G3T2
https://doi.org/10.1080/15391523.2014.888272
https://doi.org/10.1016/j.chb.2007.02.007
https://doi.org/10.1017/CBO9781139519526.013
https://doi.org/10.1017/CBO9781139519526.013
https://doi.org/10.1207/s15327884mca0503_3
https://doi.org/10.1207/s15327884mca0503_3
https://doi.org/10.2190/YHGG-RVGP-E60X-N9N3
https://doi.org/10.2190/YHGG-RVGP-E60X-N9N3
https://doi.org/10.1145/2576874
https://doi.org/10.1007/s11409-014-9117-z
https://doi.org/10.1007/s11409-014-9117-z
https://doi.org/10.1016/j.chb.2017.01.005
https://doi.org/10.1016/j.compedu.2014.06.004
https://doi.org/10.1016/j.compedu.2014.06.004
https://doi.org/10.3102/0013189X032008021
https://doi.org/10.3102/0013189X032008021
https://doi.org/10.1080/01421590220125268
https://doi.org/10.1080/01421590220125268
https://doi.org/10.1016/j.jss.2016.09.028
https://doi.org/10.3758/BF03204766
https://doi.org/10.3758/BF03204766
https://doi.org/10.1016/j.chb.2014.09.012
https://doi.org/10.1016/j.chb.2014.09.012
https://doi.org/10.25300/MISQ/2014/38.1.12
https://doi.org/10.1076/csed.13.2.137.14200
https://doi.org/10.1016/j.chb.2016.08.047
https://doi.org/10.1016/j.chb.2016.08.047
https://doi.org/10.1016/j.chb.2013.04.030
https://doi.org/10.1016/j.chb.2013.04.030
https://doi.org/10.2190/EC.50.1.d
https://doi.org/10.2190/EC.50.1.d

434 WU ET AL.
(pp. 403–433). Cambridge, UK: Cambridge University Press. https://

doi.org/10.1017/CBO9781139031127.028

Shaffer, D. W. (2017). Quantitative Ethnography. Madison, Wisconsin:

Cathcart Press.

Shaffer, D. W., Collier, W., & Ruis, A. R. (2016). A tutorial on epistemic net-

work analysis: Analyzing the structure of connections in cognitive,

social, and interaction data. Journal of Learning Analytics, 3(3), 9–45.
https://doi.org/10.18608/jla.2016.33.3

Shaffer, D. W., & Ruis, A. R. (2017). Epistemic network analysis: A worked

example of theory‐based learning analytics. In C. Lang, G. Siemens, A.

F. Wise, & D. Gasevic (Eds.), Handbook of learning analytics

(pp. 175–187). (n.p.): Society for Learning Analytics Research.

Teague, D., & Lister, R. (2014). Longitudinal think aloud study of a novice

programmer. Paper presented at the the Sixteenth Australasian

Computing Education Conference.

Teague, D., & Roe, P. (2008). Collaborative learning: Towards a solution for

novice programmers. Paper presented at the tenth conference on

Australasian computing education.

Turkle, S., & Papert, S. (1990). Epistemological pluralism: Styles and voices

within the computer culture. Signs, 16(1), 128–157. https://doi.org/
10.1086/494648

Wang, S. L., & Hwang, G. J. (2012). The role of collective efficacy, cognitive

quality, and task cohesion in computer‐supported collaborative learn-

ing (CSCL). Computers & Education, 58(1), 679–687. https://doi.org/
10.1016/j.compedu.2011.09.003

Wellons, J., & Johnson, J. (2011). A grounded theory analysis of introduc-

tory computer science pedagogy. Journal on Systemics, Cybernetics

and Informatics, 8(6), 9–14.
Wilkerson‐Jerde, M. H. (2014). Construction, categorization, and consen-

sus: Student generated computational artifacts as a context for

disciplinary reflection. Educational Technology Research and Develop-

ment, 62(1), 99–121. https://doi.org/10.1007/s11423‐013‐9327‐0

Williams, L., & Kessler, R. (2002). Pair programming illuminated. Boston, MA:

Addison‐Wesley Longman Publishing Co., Inc.

Williams, L., Wiebe, E., Yang, K., Ferzli, M., & Miller, C. (2002). In support of

pair programming in the introductory computer science course.

Computer Science Education, 12(3), 197–212. https://doi.org/

10.1076/csed.12.3.197.8618

Wing, J. M. (2006). Computational thinking. Communications of the ACM,

49(3), 33–35. https://doi.org/10.1145/1118178.1118215

Wu, B., Wang, M., Spector, M., & Yang, S. (2013). Design of a dual‐mapping

learning approach for problem solving and knowledge constructionin

ill‐structured domains. Educational Technology & Society, 16(4), 71–84.

Zhong, B., Wang, Q., Chen, J., & Li, Y. (2016). An exploration of three‐
dimensional integrated assessment for computational thinking. Journal

of Educational Computing Research, 53(4), 562–590. https://doi.org/
10.1177/0735633115608444

How to cite this article: Wu B, Hu Y, Ruis AR, Wang M.

Analysing computational thinking in collaborative program-

ming: A quantitative ethnography approach. J Comput Assist

Learn. 2019;35:421–434. https://doi.org/10.1111/jcal.12348

https://doi.org/10.1017/CBO9781139031127.028
https://doi.org/10.1017/CBO9781139031127.028
https://doi.org/10.18608/jla.2016.33.3
https://doi.org/10.1086/494648
https://doi.org/10.1086/494648
https://doi.org/10.1016/j.compedu.2011.09.003
https://doi.org/10.1016/j.compedu.2011.09.003
https://doi.org/10.1007/s11423-013-9327-0
https://doi.org/10.1076/csed.12.3.197.8618
https://doi.org/10.1076/csed.12.3.197.8618
https://doi.org/10.1145/1118178.1118215
https://doi.org/10.1177/0735633115608444
https://doi.org/10.1177/0735633115608444
https://doi.org/10.1111/jcal.12348

