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Teaching and Assessing Engineering Design Thinking with

Virtual Internships and Epistemic Network Analysis*

GOLNAZ ARASTOOPOUR, DAVID WILLIAMSON SHAFFER, ZACHARI SWIECKI,
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Departments of Biomedical Engineering and Educational Psychology, University of Wisconsin-Madison, Madison, WI 53706, USA.
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An engineering workforce of sufficient size and quality is essential for addressing significant global challenges such as

climate change, world hunger, and energy demand. Future generations of engineers will need to identify challenging issues

and design innovative solutions. To prepare young people to solve big and increasingly global problems, researchers and

educators need to understand how we can best educate young people to use engineering design thinking. In this paper, we

explore virtual internships, online simulations of 21st-century engineering design practice, as one method for teaching

engineering design thinking. To assess the engineering design thinking,we use epistemic network analysis (ENA), a tool for

measuring complex thinking as it develops over time based on discourse analysis. The combination of virtual internships

and ENA provides opportunities for students to engage in authentic engineering design, potentially receive concurrent

feedback on their engineering design thinking, and develop the identity, values, and ways of thinking of professional

engineers.
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1. Introduction

Weare facedwith significant global challenges, such

as finding alternative energy sources, addressing

climate change, and securing cyberspace. At the

same time, the development and use of new tech-

nologies is accelerating. In just a few decades,
products and systems have been developed that

efficiently harness solar energy, rapidly purify

water, and allow us to network with billions of

people around the world.

With the industrial changes that this century will

bring, future generations of engineers will need to

develop a form of engineering design thinking that

allows them to understand and solve the complex
social and physical relationships that enable

modern technologies to function. If the goal of

engineering education, as Dym and colleagues [1]

suggest, is to produce engineers who can design,

then providing students with early opportunities to

engage in authentic engineering design work may

help students develop innovative design skills such

as problem formulation, need identification, proto-
type creation, concept analysis, and documentation

[2, 3]. Additionally, modern engineering design

thinking requires empathy, meaningful social inter-

actions with others [4, 5], and a comprehension of

the social and economic consequences of certain

design choices [6].

In this paper, we review one method of providing

authentic experiences for students, i.e., teaching
engineering design thinking: engineering virtual

internships. We examine students’ attitudes towards

engineering as well as their performance in virtual

internships, which simulate engineering design pro-

blems and practices in an online learning environ-

ment. To assess engineering design thinking, we use

epistemic network analysis (ENA), a tool for model-

ing and measuring complex thinking as it develops
over time. Our aim is to show that using virtual

internships allows for the implementation of

authentic engineering experiences for students.

Using ENA to assess student work during these

experiences can potentially provide students with

real-time feedback on their engineering thinking,

laying the foundation for life-long professional

development and the ability to provide innovative
solutions to current and future global challenges.

2. Virtual internships for engineering
design education

In recent decades, many engineering programs have

developed first-year cornerstone design courses in

order to expose students to design thinking earlier in

their engineering careers. However, these design

projects are typically not based on authentic prac-

tices or real-world problems. In most cases, it is too

difficult, too dangerous, or too expensive for first-

year students, who lack the requisite training and
experience, to solve such problems. Similarly,

internships, cooperative research programs, and

other work-based learning opportunities, which

help students begin to form the identity, values,
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and habits of mind of professional engineers, are

often inaccessible to first-year students because they

do not yet have the skills and knowledge to con-

tribute to professional engineering work. Even

when internships are available, the quality of men-

toring is variable, somedonot provide studentswith
opportunities to do authentic engineering design

work, and there are not enough high-quality intern-

ships to meet the needs of the engineering under-

graduate population [7]. Furthermore, in both

cornerstone design courses and internships, it is

difficult to assess whether students are learning to

solve engineering design problems in the way pro-

fessional engineers do [8, 9].
Our prior research [10–19] has shown that engi-

neering virtual internships, which are online simula-

tions of authentic engineering design practice, can

address these challenges. For example, in the virtual

internship Nephrotex [17], first-year students work

as materials engineering interns at a fictitious bio-

technology company to design an ultrafiltration

membrane for hemodialysis equipment. Interns
work both individually and in teams, performing

tasks that they would do in an ideal internship:

reading and analyzing research reports, designing

and performing experiments, responding to client

and stakeholder requirements, writing reports, and

proposing and justifying design prototypes, all

within a self-contained workplace simulation.

Thus, a key aspect of this particular engineering
virtual internship is the ability to participate in

several iterations of the engineering design process

in the context of a real-world design problem.

The activities and team interactions all take place

through the web-based platform that supports the

internship. Interns begin by logging into the com-

pany portal, which includes email and chat tools.

They send and receive emails to and from their
supervisor and use the chat window for instant

messaging with other team members and their

assigned design advisor. The design advisors are

trained engineering senior undergraduate students,

graduate students, or instructors playing the role

through the companyportal. These players logon to

the system during the scheduled class sessions,
mentor interns via chat, and monitor the interac-

tions between interns and characters in the virtual

internship that are automated by the system (non-

player characters). Outside of scheduled class ses-

sions, interns can log on to do work outside of class

and design advisors can log on to assess interns’ in-

class and out-of-class work. There is one design

advisor assigned to every 25 interns.
Interns at Nephrotex prepare for the design task

by examining company research reports based on

actual experimental data on a variety of polymeric

materials, chemical surfactants, carbon nanotubes,

and manufacturing processes. After collecting and

summarizing research data, they begin the actual

design process using the simulated engineering

drawing tool (Fig. 1a). First individually and then
in teams, interns develop hypotheses based on their

research, test these hypotheses in the provided

design space, and analyze the results provided.

The design space inNephrotex is constrained,mean-

ing that interns choose from a fixed (and pre-

determined) set of design inputs. The space contains

four input categories and five output categories

(Fig. 1b); there are 570 devices with unique perfor-
mance results that can be designed in Nephrotex

[20]. The design space is also fully mapped, meaning

that performance criteria exist for all 570 device

options available. Importantly, however, students

cannot access performance criteria for all devices;

each student can only query the system for perfor-

mance criteria for twenty-five unique device designs.

Interns also learn about internal consultants
within the company who have a stake in the out-
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come of their prototype design. These consultants

value different outputs, which are essentially

performance criteria. Each of the five internal con-

sultants in Nephrotex prioritizes two output para-

meters and identifies specific threshold values for

each output. For example, the clinical engineer
would like a high degree of biocompatibility and

high flux, while the manufacturing engineer would

like a device with high reliability but low cost. The

consultants’ concerns are often in conflict with one

another (e.g., as flux increases, cost also increases),

reflecting the conflicting demands common in pro-

fessional engineering design projects.

In the first half of the internship, students in teams
test five devices. During the second half of the

internship, interns switch teams and inform their

new team members of the research they have con-

ducted and results they have obtained thus far. In

the new teams of five, interns test five more devices

(for a total of twenty-five devices tested), analyze the

second iteration of results, and decide on a final

prototype. During the final days of the internship,
interns present their prototypes and justify their

design decisions. They then complete an exit inter-

view, which includes survey questions about their

attitudes towards the engineering profession.

Virtual internships such asNephrotex thus enable

first-year undergraduates to experience authentic

engineering design practice, with professional men-

toring and real-time feedback, in a realistic, colla-
borative learning environment.Although the design

spaces are fully mapped, students work with

authentic design problems with many feasible

design choices. In turn, students must justify their

particular design choices and tradeoffs.

Participating in a virtual internship give students

the opportunity to (a) engage in meaningful, con-

sequential engineering design practice; (b) frame,
investigate, and solve a complex engineering design

problem; and (c) begin to see themselves not as

engineering students but as student engineers.

Because all student and mentor actions and inter-

actions occur in a closed system, they can be

automatically recorded in log files, allowing for

analysis of learning outcomes and processes and

of the extent to which students are developing, in
addition to core engineering knowledge and com-

petencies, the identity, values, habits of mind, and

other attributes of professional engineers.

3. Developing and assessing engineering
design thinking

Assessing the development of engineering design

thinking is a significant challenge. Existing educa-

tion standards, such as the ABET [21] standards,

offer little help. ABET criterion 3c, for example,

states that students, upon completing a bachelor’s

degree in engineering, should display ‘‘an ability to

design a system, component, or process to meet

desired needs within realistic constraints such as

economic, environmental, social, political, ethical,

health and safety, manufacturability, and sustain-
ability.’’ Typical of existing standards, this provides

guidance neither on how to help students develop

this competency (i.e., curriculum design) nor on

how to determine if students have met this goal

(i.e., assessment). In one study centering on ABET

standards,McKenzie and colleagues [22] developed

and implemented a large-scale survey interviewing

senior capstone course instructors about their engi-
neering design assessment methods. Faculty mem-

bers expressed that ABET criteria are not well

assessed in capstone courses and wanted assistance

developing assessment tools. Regarding their prac-

tices in the classroom, faculty responded that ‘‘they

lacked information and know-how to develop

assessments for all users, write clear and appropri-

ate course objectives, and determinewhether assess-
ments used in courses are as fair as desired’’ (p. 17).

In response to these issues, many design research-

ers have developed assessment tools that include

surveys, pre-post tests, and rubrics for final designs

and portfolios [23–26]. For example, Safoutin and

colleagues’ design attribute framework [27] consists

of a detailed list of standards that transforms the

imprecise ABET learning outcomes into informa-
tion that instructors could use in curriculum and

assessment development. The framework provides

descriptions of the various stages of the design

process and identifies what is required of students

at each step. For instance, they identify one compo-

nent as needs recognition, and detail several sub-

components, such as identifying needs to be served

by the design, evaluating societal needs, evaluating
the cost associated with a product, and identifying

target customers and markets. Safoutin and collea-

gues generated the design attributes from a large

number of engineering design process models and

from verbal protocol analysis studies, in which

students were observed while engaging in a design

task.

Although Safoutin and colleagues’ framework
and other rubrics provide items to identify design

thinking, they may not accurately identify the

authentic design process. Design thinking doesn’t

always follow a direct, straightforward pathway

and thus, assessments that follow a linear model

maynot accurately capture authentic design activity

or thinking. Adams and colleagues [28] agree that

static, stepwise, and fixed models of learning pro-
gressions may not be useful, and instead favor

dynamic and interconnected models that articulate

how variations in an embodied understanding of

Golnaz Arastoopour et al.1494



practice reveal multiple trajectories of intercon-

nected ways of thinking, acting, and being in the

world. Saffer [29] has claimed that design thinking

involves a focus on customers/users, finding alter-

natives, ideation and prototyping, dealing with

wicked problems, possessing a wide range of subject
knowledge, and exhibiting emotional understand-

ings. He continues, ‘‘Other disciplines, I’m sure, do

one or more of these at any given time. But I think

it’s the combination of these that mean—or should

mean—when using the phrase ‘design thinking.’’

Based on the value of interconnectedness in

design thinking, we approach complex design think-

ing from the learning science theory of epistemic
frames [30–32]. Epistemic frame theory suggests

that the characteristics of engineering professionals’

design thinking are denoted by specific patterns of

connections among the knowledge, skills, values,

identity, and ways of making decisions (the episte-

mic frame elements) that characterize authentic

engineering design practice. In otherwords, realistic

design practice is characterized not by a collection
of isolated elements but by a network of them, an

epistemic frame, that makes the individual elements

meaningful, actionable, and persistent. The associa-

tions that a person makes among elements in an

epistemic frame can be modeled with ENA [33–38],

a psychometric tool that can assess evidence from

student participation in virtual internships to char-

acterize how they think while solving a complex
design problem. ENA creates a network model in

which the nodes of the network represent the key

epistemic frame elements from a domain. The links

between these nodes quantify how often a person

has made connections between these elements at

some point in time. In this way, ENA models the

development over time of an individual’s epistemic

frame and, in turn, quantifies and assesses their
ability to think and work like professionals in the

domain.

4. Methods

In the fall semester of 2014, we implemented

Nephrotex in a new introductory engineering
course in which students participated in two virtual

internships. Each internship lasted 7 weeks. We

collected data in two forms: (1) chat logs from

teams of students during the second half of the

simulation in which they made their final design

decisions and (2) each team’s final design specifica-

tions. The data presented here were collected from

two instances of Nephrotex. Both instances con-
tained five teams of three to five students each, for a

total of 10 teams and 46 students.

To examine the design processes that students

used, we developed a coding scheme based on

Safoutin and colleagues’ [27] design attribute frame-

work. The coding scheme consists of seven elements

that were relevant for Nephrotex: problem defini-

tion, planning, management, information gather-

ing, feasibility analysis and evaluation, selection/

decision, and documentation. We coded chat dis-
course utterances from student teams in Nephrotex

using the nCoder [39, 40], a validated, automated

discourse coding system.

The original coding scheme consisted of fourteen

elements: need recognition, problem definition,

planning, management, information gathering,

idea generation, modeling, feasibility analysis, eva-

luation, selection/decision, implementation, com-
munication, documentation, and iteration. We

selected and modified 7 of the 14 codes that were

applicable to Nephrotex (Table 1). We removed

need recognition and modeling because students

are given the needs statement and the modeling

tools within the internship program. We removed

idea generation and implementation because stu-

dents do not create a novel design or a physical
prototype—all designs are virtually produced.

Finally, we removed iteration and communication

because students are required to iterate through two

design cycles and to use the chat tool to commu-

nicate.

To investigate the relationship between the

teams’ design discourse networks and the quality

of their final designs, we calculated a quality score
for each team’s final device. We assigned a quality

score for each team’s final device based on the

number of consultant thresholds the device met.

Student teams that scored below the median value

were categorized as low scoring, and student teams

that scored above the median value were categor-

ized as high scoring (1 = high scoring, 0 = low

scoring).
Then, to determine what sorts of connections

between design attributes were made by teams that

generated high- or low-quality designs, we exam-

ined the ENA results for each team. The technical

details of ENA have been provided elsewhere [10,

36, 39], but in short, ENAmeasures the connections

among discourse elements, or codes, by quantifying

the co-occurrence of those elements within a defined
window of utterances. These windows are defined

such that the utterances within a given window are

assumed to be closely related topically. In virtual

internships, we typically define windows in terms of

the activities in the internship, such as background

research or team design discussions.

More specifically in ENA, for any two codes the

strength of their association in a network is com-
puted based on the frequency of their co-occurrence

in discourse. For example, the window in Fig. 2a

would be coded for ‘‘planning’’ and ‘‘selection/

Teaching and Assessing Engineering Design Thinking with Virtual Internships and Epistemic Network Analysis 1495
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Table 1. Design coding scheme based on Safoutin and colleagues’ design attribute framework applied to Nephrotex discourse

Code Description Actions Examples

1. Problem Definition Determining design objectives
and functional requirements
based on needs statement,
identifying constraints on the
design problem, and establishing
criteria for acceptability and
desirability of solutions.

� Transform statement of need
to statement of design
objectives (functional
requirements).

� Identify or reference
constraints on the design
problem.

This material maximizes flux which is very
important to the design because it allows
patients to have a shorter treatment time.

yes because some consultants wanted to
maximize flux while others wanted to
minimize cost

2. Planning Development of an initial design
strategy, including an overall
plan of attack, decomposition of
design problem into subtasks,
prioritization of subtasks,
establishment of timetables and
milestones by which progress
may be evaluated.

� Develop a design strategy.

� Decompose problem into
subtasks where appropriate.

How about everyone describes what the
strengths and weaknesses are of the material
they worked with based on their previous
designs?

Yes, we should each contribute one prototype
containing our material, but we should keep
the other variables of each design somewhat
constant, so that we can easily compare the
results of the different designs.

3. Management Guidance of course of action
during design and in response to
changing conditions.

� Manage time and resources to
meet timetable and milestones.

I think the deliverable is due at 5 so I don’t
think that would work.

okay, guys.... I think the personal deadlinewe
should set is midnight tonight.

4. Information
Gathering

Gathering information about the
design problem, including the
need for a solution, user needs
and expectations, relevant
engineering fundamentals and
technology, and feedback from
users.

� Gather or reference data to
verify the existence of a
problem including data on
customer perceptions and
desires.

� Gather or reference relevant
engineering fundamentals and
technological state-of-the-art.

The graphs made all of the options easily
comparable in a side to side format.

We would need to make sure all toxins can
pass through the membrane and anything
that needs to stay in the blood does not get
filtered out.

5. Feasibility Analysis
& Evaluation

Evaluating feasibility of
alternatives or proposed
solutions by considering stated
constraints as well as implied
constraints such as
manufacturability,
compatibility, cost, and other
criteria.

Objectively determining
suitability of alternatives or
proposed solutions by comparing
actual performance to evaluation
criteria.

� Evaluate feasibility of multiple
alternatives in terms of
constraints.

� Recognize unstated
constraints such as
manufacturability or
assemblability in evaluating
designs.

� Use evaluation criteria to
objectively judge acceptability,
desirability of alternatives.

That sounds good but if wewanted a true base
model/cheapest we would have to do no
surfactant or CNT.

I suppose for the patient, Christopher’s may
be better, but Scottland’s is the only
prototype that met all the requirements.

I think mine would be a good choice too
actually because it still meets the internal
consultants requests and is at least a little less
expensive.

I think Prototype 3 on this last testing batch
gave the best results, covering the most
aspects, most equally.

6. Selection/Decision Selection of the most feasible and
suitable concept among design
alternatives.

� Discern feasible solutions or
partial solutions.

� Use evaluation to select
feasible alternative that best
satisfies objectives.

I think that prototype would probably be the
best option.

Okay, so then our prototype would be
PESPVP, Dry-jet wet, hydrophilic,
20%CNT.

Then yes let’s use that device.

So we each pick the one that we think will
perform the best, and then compare them?

I think mine would be a good choice too
actually because it still meets the internal
consultants requests and is at least a little less
expensive.

7. Documentation Production of usable documents
of record regarding the design
process and design state,
including decision history and
criteria, project plan and
progress, intermediate design
states, finished product, and use
of product.

� Document decisions and
decision criteria.

� Keep a journal or other record
of design development.

� Create and maintain planning
documents and status
assessment reports.

� Document the finished
product or process as
appropriate for the discipline
according to standard practice.

We can also include a nice 3 sentence
justification.

Alright I can post my notebook after in the
shared area.

I have 4 designs and 3 justifications in my
notebook.

We created a google document towork in and
we divided tasks among the group members.



decision,’’ but not for ‘‘documentation,’’ ‘‘feasibil-

ity & evaluation,’’ ‘‘management,’’ ‘‘information

gathering,’’ or ‘‘problem definition.’’ Fig. 2b

shows this stanza represented as a network, where

the elements that co-occurred in that stanza are now

connected while elements that do not co-occur are
not connected. Fig. 2c shows this stanza as a

symmetric adjacency matrix, where the codes are

represented both as rows and columns. Elements

that co-occurred are represented by a one where

they intersect, and elements that did not co-occur

are represented by a zero. Not all codes are included

in this representation for visual clarity.

ENA constructs an adjacency matrix for every
stanza. The adjacency matrices are summed for

every team of students and normalized so that

groups with more discussion in chat are not

weighted more heavily than groups who had less

discussion but used the same configuration of con-

nections in their discourse. Finally, the matrices are

represented as vectors in a high-dimensional space,

and a singular value decomposition is conducted to
rotate the vectors so as to show the greatest variance

among the matrices. This approach is mathemati-

cally similar to a principal components analysis. In

this rotated space, each team’s adjacency matrix is

represented as a point in high-dimensional space

that roughly corresponds to the network’s centroid.

Each dimension in this space can be interpreted by

examining the loadings (rotation) matrix, which,

again, is similar to the interpretation in a principal
components analysis.

In sum, ENA can be used as a tool for examining

the complex links and connections between key

skills and ways of making decisions that occur

during the authentic engineering design process.

However, ENA is just onemethod formeasurement

and analysis of learning; modern approaches

include a range of techniques. While each technique
has its particular strengths in measuring learning,

each also has limitations. For example, diagnostic

classification and latent class models can be used to

make statistical inferences about latent variables

and their relationships to problem-solving tasks.

However, current techniques require very large

datasets to analyze even small numbers of latent

classes;moreover, suchmodels are notwell suited to
the analysis of data in ill-formed problem settings,

such as authentic engineering design problems. At

another end of the spectrum, techniques from dis-
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Fig. 2a. Example window coded for two design codes.

Fig. 2b. Example stanza represented as a network.

Fig. 2c. Example stanza represented as an adjacency matrix.



course analysis are designed to investigate rich sets

of data about problem solving; however, extant

methods are not well suited to large data sets or
large numbers of students. Additionally, ENA

examines the co-occurrence of elements within a

given segment of time and is able to model the co-

occurrences across these time segments. Other

methods may not consider the connections within

each time segmentation or allow for network repre-

sentations of the discourse.

By providing a quantitative model of engineering

design thinking that measures connections between
critical design skills, ENA provides more than

merely a technical advance in the science of mea-

surement and assessment. It lays the foundation for

analyzing creativity and innovation in design tasks

by providing an approach to quantifying expertise

in ill-formed problem domains, such as engineering

design.

In a previous study, we used similarmethods with
a preliminary coding scheme [39]. In this current

study, we revised the coding scheme and present the

refined results.

5. Results

The first two dimensions of ENA results for this

study (Fig. 3) show that there is some distinction

between the groupswith low-quality devices and the

groups with high-quality devices. In particular, the

groups with low-quality devices have lower values
on dimension one, and the groups with high-quality

devices have higher values on dimension one.

To gain more insight into the differences between

student groups that generate low- and high-quality

devices, we plotted the mean network connections

for each group (Fig. 4). The connections distin-

guishing the low- and high-scoring groups are

connections to management. That is, the discourse

Golnaz Arastoopour et al.1498

Fig. 3. First two dimensions of ENA results for student groups
that generate low-quality devices (labeled with L) and student
groups that generate high-quality devices (labeled with H). The
points represent the centroids of each group’s network. The
squares represent the means of the points. The first dimension
(X) accounts for 37% of the variance in the data, and the second
dimension (Y) accounts for an additional 23%. A higher score on
dimension 1 indicates more connections to management and a
higher score on dimension 2 indicates more connections with
selection/decisions.

Fig. 4.Meannetwork representations of student teams that generate low-quality devices (left) and teams that generate high-quality devices
(right). Thicker lines indicate stronger and more frequent connections between elements. Teams that generate high-quality devices have
networks withmore connections to management, which is why the centroids in Fig. 2 are plotted higher on the first dimension than teams
with low-quality devices.



of student teams that generated high-quality devices

on average showedmore connections betweenman-

agement talk and other elements of engineering

design thinking than the discourse of student

teams that generated low-quality devices.

As reflected in the discourse networks, student
teams that generated high-quality devices engaged

in discourse that involved managing their decision

making and planning (Table 2).

Because student teams that made more connec-

tions withmanagement in their networks aremostly

located on the right in Fig. 3, we can interpret ENA

dimension 1 as an IntegratedManagement score. A

higher Integrated Management score (i.e., a right-
ward shift on ENA dimension 1) indicates that a

team is making more connections between manage-

ment and other aspects of engineering design think-

ing.

There was a significant difference between design

discourse networks on the Integrated Management

dimension (ENA dimension 1) for student teams

that produced high-quality designs (M = 0.168, SD
= 0.14) and student teams that produced low-

quality designs (M = –0.168, SD = 0.12 t(10) =

3.9, p < 0.01). The effect size, Cohen’s d, was equal

to 1.0, which indicates a large difference between the

two groups.

6. Discussion

The results above show that ENA can be used to

quantify student teams’ qualitative discourse in

Nephrotex, a virtual internship program for first-

year undergraduate engineering students. Taken

together, the discourse networks and the device

quality scores reveal that student teams that inte-

grated management with all the design attributes
were more likely to produce high-quality devices.

Thus, ENA and device quality scoring can be used

together to assess the extent to which students make

connections among critical design components and

to make claims about student teams’ design abil-

ities. More broadly, the data suggest that ENA in

coordination with other measures from activities

within a virtual internship can reveal the develop-
ment of students’ engineering design thinking and

understanding.

The purpose in using virtual internships and

ENA together is twofold. First, virtual internships

offer theoretically-grounded engineering learning

environments in which students can experience

authentic ways in which engineers frame, investi-

gate, and solve problems. We do not suggest that
virtual internships should replace all other engineer-

ing design learning opportunities; there are clear

advantages to working with real materials and real

problems at different points in a student’s learning

trajectory. Rather, virtual internships have several

key affordances: (1) the design space is fully

mapped, meaning that students are making design

choices fromadatabase [10, 17]; (2) problems canbe

posed and scaffolded within the virtual internship

such that no prior engineering knowledge is
required without reducing the authenticity of the

experience; and (3) rich data on student thinking can

be captured for subsequent analysis [17, 41].

Second, assessing student data from virtual

internships with ENA offers a model for measuring

engineering design thinking and 21st-century engi-

neering skills. To date, ENAhas been used as a form

of summative assessment and as not yet been inte-
grated into virtual internships as a form of forma-

tive assessment. However, these results show that

ENA could potentially allow for assessment of

student thinking as the student is performing tasks.

In turn, the assessment can provide instructors with

real-time feedbackwhile the student is interacting in

the learning environment. Instructors can then

intervene early in the student’s learning trajectory.
For example, in the results above, the quality of a

design is positively correlated with integrated man-

agement skills. Using this measurement, an instruc-

tor can identify groups that are not managing their

time and resources efficiently, and then mentor the

students in terms of developing their management

skills, which should ultimately lead to higher quality

final designs.
Perhaps most importantly, using virtual intern-

ships and ENA together provides an opportunity to

standardize assessment of engineering design abil-

ities. Within the virtual internships, all students can

be given the same real-world problem to solve and

identical resources with which to solve it, providing

a basis for standardized assessment. Using an

assessment model that includes ENA and other
outcome measures from the virtual internship, we

can make assessment claims about students’ design

thinking, make valid comparisons among different

students’ design thinking, and measure students’

design thinking against standards of design thinking

that could be developed from real-world practice. In

other words, virtual internships and ENA provide a

standardized test that actually measures what we
value—engineering design thinking.

7. Conclusion

Virtual internships provide an environment in

which students with no prior engineering training

can engage in authentic engineering practices as
they frame, investigate, and solve realistic engineer-

ing design problems. Through these internships,

students learn basic engineering knowledge, skills,

and practices, and they begin to form the epistemic
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frames of professional design engineers—that is,

they learn to think like designers. Because all the

activities occur in a fully mapped online learning

environment, virtual internships produce rich data

on student learning, andENAallows us to assess the

extent to which students learn to design in the way
professional engineers do. The combination of these

approaches offers significant potential for improv-

ing learning outcomes in cornerstone engineering

design courses and standardizing assessment of

engineering design thinking.
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