
nCoder+: A Semantic Tool for Improving
Recall of nCoder Coding

Zhiqiang Cai1(&) , Amanda Siebert-Evenstone2 ,
Brendan Eagan2 , David Williamson Shaffer2 , Xiangen Hu1,3 ,

and Arthur C. Graesser1

1 The University of Memphis, Memphis, TN 38152, USA
zhiqiang.cai@gmail.com

2 University of Wisconsin-Madison, Madison, WI 53706, USA
3 China Central University, Wuhan, Hubei, China

Abstract. Coding is a process of assigning meaning to a given piece of evi-
dence. Evidence may be found in a variety of data types, including documents,
research interviews, posts from social media, conversations from learning
platforms, or any source of data that may provide insights for the questions
under qualitative study. In this study, we focus on text data and consider coding
as a process of identifying words or phrases and categorizing them into codes to
facilitate data analysis. There are a number of different approaches to generating
qualitative codes, such as grounded coding, a priori coding, or using both in an
iterative process. However, both qualitative and quantitative analysts face the
same coding problem: when the data size is large, manually coding becomes
impractical. nCoder is a tool that helps researchers to discover and code key
concepts in text data with minimum human judgements. Once reliability and
validity are established, nCoder automatically applies the coding scheme to the
dataset. However, for concepts that occur infrequently, even with an acceptable
reliability, the classifier may still result in too many false negatives. This paper
explores these problems within the current nCoder and proposes adding a
semantic component to the nCoder. A tool called “nCoder+” is presented with
real data to demonstrate the usefulness of the semantic component. The possible
ways of integrating this component and other natural language processing
techniques into nCoder are discussed.

Keywords: Coding � Grounded coding � A priori coding � Automatic coding �
Grounded theory � Qualitative analysis � Quantitative analysis � Latent Semantic
Analysis � Topic modeling � Machine learning

1 Introduction

When researchers analyze text data, they often search for culturally relevant and
meaningful aspects of a discourse. For example, people that are interested in under-
standing how students think during science curriculum might look for science content
knowledge (e.g. nitrogen cycle knowledge) and for scientific practices (e.g. developing
and using models). However, in order to make the claim that a student exhibits

© Springer Nature Switzerland AG 2019
B. Eagan et al. (Eds.): ICQE 2019, CCIS 1112, pp. 41–54, 2019.
https://doi.org/10.1007/978-3-030-33232-7_4

scientific knowledge or practices, researchers need to provide evidence for their
interpretation. One way to find evidence in data—and eventually qualitative interpre-
tations—is to develop a set of codes that allow researchers to systematically categorize
phenomena in their data to help identify patterns [1, 2].

However, in the age of digital learning environments and ubiquitous data collec-
tion, we have more information than ever about what students are doing and how they
are thinking. The sheer volume of this data can render traditional qualitative methods
unfeasible. One way to address this issue is to create automated codes that apply some
set of rules to a dataset to assign values to each piece of data.

To aid researchers, Shaffer and his colleagues created a system for scaffolding
automated classifier development. The nCoder is a learning analytics platform used to
develop, refine, validate, and implement automated coding schemes. The nCoder is
designed specifically for working with large and small sets of text data, such as
interviews, transcripts, logfiles, and other text data. Users can generate codes by
defining a construct, identifying common words associated with the construct, testing
their code, and then updating their construct definition or wordlist until the researcher
achieves an acceptable level of agreement between their coding and the automated
coding scheme.

In this paper, we first give an in-depth description and analysis of the nCoder
coding process. Then we discuss a particular problem with recall during this process.
Recall is the ratio of the number of items coded by a classifier to the total number of
items that should be coded. In nCoder, it is possible to have a situation, when the
frequency of a code is low, for the recall to be low, even if the kappa is high enough to
achieve a statistically significant rho. That is, it is possible to achieve acceptable
agreement and generalize that agreement to the dataset yet have a potentially high rate
of false negatives. After identifying and explaining this problem, we describe a
potential solution to this problem – a newly developed tool equipped with a semantic
component that helps solving the low recall problem. This tool is called “nCoder+”,
which implies that this tool is simply an add-on to nCoder. A real data set will be used
to illustrate the usefulness of this tool. We will end the paper with discussions on
integrating this new component and other possible techniques into nCoder.

2 Approaches to Coding

Coding is a process of assigning meaning to a given piece of evidence. Evidence may
be found in a variety of data types, including documents, research interviews, posts
from social media, conversations from learning platforms, or any source of data that
may provide insights for the questions under qualitative study. In this study, we focus
on text data and consider coding as a process of identifying words or phrases and
categorizing them into codes to facilitate data analysis.

There are a number of different approaches to generating qualitative codes, such as
grounded coding, a priori coding, or using both in an iterative process [3]. Grounded
coding, also referred to as inductive, emergent, or bottom-up coding, is an exploratory
process which allows a researcher to discover new concepts and theories that emerge
from the text data [4]. Researchers are encouraged to read through the data line by line

42 Z. Cai et al.

and identify concepts that may construct in-depth understanding of the data [4, 5]. One
major challenge in grounded coding is generating new concepts. Since it is exploratory,
a researcher may iteratively refine the definition of the concepts, which implies data re-
coding. When the data size becomes too large, grounded coding by hand can become
time-consuming if not impractical.

A priori coding is another identification process, in which a coder identifies pre-
defined concepts from an existing theoretical framework. A priori coding, also referred
to as theoretical, deductive, or top-down coding, starts with a theory or set of constructs
and then searches for the ideas in the data rather than using the ideas in the data. In our
example above, someone interested in identifying science practices from the Next
Generation Science Standards may search for qualitative evidence of students using
one or multiple of the eight science and engineering practices.

Whether a researcher starts with the data and creates categories or starts with
categories and identifies them in the data, researchers face challenges of coding reliably
and consistently. First, researchers often work to validate codes in their data to ensure a
common understanding of concepts between two raters1. Inter-rater reliability
(IRR) measures assess whether two raters assign codes consistently in the same way.
To determine whether two raters have identified the same properties in the data,
researchers may use tests of agreement, such as Cohen’s kappa, to quantify to what
degree the two raters agree with each other. A common heuristic in studies of CSCL
(Computer Supported Collaborative Learning) is for researchers to sample 10–20% of
their data to assess IRR [6]. Again, when the data size is large, manually coding this
much data can become difficult if not impossible, especially if multiple IRR analyses
need to be performed to achieve acceptable reliability between raters.

Advances in computer and natural language processing technologies have made
another coding approach more accessible to researchers: automated coding. An auto-
mated coder or classifier is an algorithmic process that identifies whether a piece of data
belongs in a certain category or class. For example, topic modeling is capable of
automatically finding latent topics in a text data set and “code” the data by topic
proportion scores [7, 8]. While this approach is automated and requires no human
coding, researchers may find that not all topics can be easily interpreted and verified.

An ideal computer coding tool does not have to be fully automated. Instead, it
should have enough flexibility to allow researchers to discover concepts they think
important. Once some concepts are discovered, the tool should be able to “learn” from
a relatively small sample of human coded data and code the data in a way close enough
to the human coder. nCoder is such a tool. Before diving deep into nCoder, we first
briefly introduce the concept of “codebooks”, which plays an important role in the
coding process.

1 Not all researchers perform IRR tests. For example, researchers may use social moderation, where
two or more raters code all of the data and resolve differences until they all agree on the code
(Herrenkohl and Cornelius) [14].

nCoder+: A Semantic Tool for Improving Recall of nCoder Coding 43

3 Codebooks

During coding, researchers often create a codebook to organize and summarize
information about codes. Code books are often used to communicate ideas for IRR and
are often reported in the methods sections of resulting publications. Within a codebook,
the name, the definition, and examples of the code are included. For example, in
analyzing text data from presidential primary debates, environmental issues could be an
interesting code. In a codebook, this code may look like the one shown in Table 1.

If the researchers used automated classifiers, then the word lists, patterns, and/or rules
that were applied to the data to assign the code may also be included in the codebook.

If the researchers choose to validate their codes, another section of the codebook is
the results of their IRR analyses. In our case, we have added our classifier list and IRR
between the human rater and classifier. In a full analysis, we would also validate our
code between two human raters as well as between the second human rater and the
classifier. In this analysis, we focus on this first iteration in the coding process.

The nCoder tool helps researchers build and validate their codebooks. A critical
component of any statistical analysis of text data is some form of coding scheme that
identifies key concepts and clusters of terms in the data. To generate valid insights,
however, this coding process has to be compared to the work of human raters. nCoder
minimizes the amount of data that needs to be hand-coded by using cutting-edge
statistical techniques to establish the reliability and validity of codes. Once codes are
validated, nCoder automatically applies a coding scheme to larger datasets quickly and
efficiently, even coding new data as it becomes available. In the next section we
describe how the nCoder scaffolds codebook creation and helps researchers perform
code validation processes.

Table 1. Code book for environmental issues

Name Definition Example Classifier IRR

Environmental
Issues

Referring to
harmful effects
of human
activity on the
biophysical
environment

“Governor Pataki,
you’ve indicated
you believe
climate change is
real and caused at
least in part by
human activity”

\benvironment
,\bclimate
,\bpollut
,\bgreenhouse
,\bdegradation
,\bglobal warm
,\bhabitat
,\bextinction
,\bsuperfund
,\btoxic
,\bconservation
,\bsustainability
,\brunoff
,\bnatural resource

j ¼ 1:00
rho ¼ 0:01
n ¼ 40

44 Z. Cai et al.

4 nCoder

nCoder is available as a free online tool (https://app.n-coder.org/) and an R package
(nCodeR) [9] that helps researchers to code large amounts of text data by supporting
the development, refinement, validation and application of automated coding schemes.
nCoder also employs Shaffer’s rho in reliability analyses, which again is available
online (https://app.calcrho.org) as an R package (rhoR) [9, 10]. Both the R packages
and webkits have been used to analyze large-scale datasets of many kinds, including
chat, email, online actions, surgical performance, and brain scan data [9–14].

For this paper, we focus on code generation which is summarized in Fig. 1 as a
flow chart for developing automated codes. To create a new coding project, users
upload their data as either a CSV (Comma Separated Value) or Microsoft excel file.
The data file may contain any number of columns, with the first row containing column
names. After the file is loaded, the user is asked to specify the text column, which is
used as the text data for coding. The detailed coding steps are described below.

Fig. 1. nCoder flowchart

nCoder+: A Semantic Tool for Improving Recall of nCoder Coding 45

Defining Codes. The first step in coding is defining a code. In nCoder, a code defi-
nition contains three elements: a name, a description, and a list of regular expressions
(RegExs). The name is the identifier of the code, which should therefore be unique. The
name should also be short and meaningful so that when it is written in an article, people
can easily understand and remember it. The description explains what the code is
about. The description should also be clear, brief and accurate. The RegEx list specifies
language patterns that can be used to code the data. For example, the RegEx “\ben-
vironment” means that if there is a word starting with “environment” in a text cell, the
code is considered present. Regular expressions are powerful in representing language
patterns. nCoder provides an interface to designate word boundaries “\b”. nCoder also
helps users create complex combinations of words. For example, a user may want to
find instances of “clean” but not “clean water”. The user would search for a regular
expression that begins with clean and does not include water, which is “^(?:(?!\bwa-
ter).)*\bclean(?!.*\bwater)”. Such an expression may be easy for a more expert pro-
grammer and nCoder helps novice users create more nuance expressions. Users add
words or expressions until they are ready to test their classifier. nCoder does not allow
the user to freely go through the data because in a later step, the tool needs to sample
“fresh” data for testing purpose. This restriction seems contradictory to the grounded
theory method, which is built on the assumption that the concepts are discovered from
navigating the data. The current version of nCoder does not allow users to do grounded
coding within the tool and this feature may be built into subsequent releases. This may
not be really a problem of nCoder, if we assume that the user has another offline tool
(e.g., excel) to navigate through the data.

Machine Coding. In this step, the dataset is automatically coded based on the regular
expressions provided by the user. nCoder uses a simple regular expression matching
algorithm to automatically code the text data. It goes through each row of the specified
text column, and checks if the text in the cell matches one of the regular expressions in
a defined code. If yes, a “1” is assigned to the data. Otherwise, a “0” is assigned.

Test Set Sampling. A test set for each concept is randomly sampled from the coded
dataset, where the minimum sample size is 10. The user may repeatedly increase
sample size by 10 until the user is satisfied with the size of the test set. If a researcher
wants to establish a kappa over a threshold of 0.65 they should use a test set size of at
least 40. If they want to use a threshold of 0.9 they should use a test set size of at least
80. nCoder provides a measure “rho” to indicate whether or not the sample size is large
enough. A rho higher than 0.05 when the kappa is higher than a threshold of interest in
the test set, indicates that the test set size should be larger. When a targeted concept has
a low occurrence in the dataset (e.g., <20%), a small test set may not be able to
represent the targeted concept and can cause difficulties in achieving sufficient IRR.
nCoder uses a technique, called “inflation” to solve this problem. That is, when creating
test sets, nCoder guaranties at least 20% of the lines in the test set contain the code. For
example, for a test set size of 10, nCoder would randomly pick 2 lines that the
algorithm coded positively and then randomly select the final 8 lines from the rest of
the data.

46 Z. Cai et al.

Human Coding. After the test set is generated, the sample texts are presented to the
user for coding. The user selects a concept to code and the corresponding test items are
displayed, together with a “Yes” button and a “No” button. The user codes the test
items by pressing “Yes” or “No”, with “Yes” indicating a “1”, or “true positive” and
“No” a “0” or “true negative”. The test items can be added if the user is not satisfied.

Testing. A user sets a kappa threshold and presses the “Run Test” button to run an
IRR test. nCoder shows three test numbers: a kappa for the test set, a kappa for the
training set (the test items in earlier cycles), and a rho value. The kappa values measure
the agreement between the human coding and the machine coding. The rho shows
whether or not the kappa value generalizes to the untested items. When rho <0.05,
acceptable reliability is established between the researcher and the machine coding. In
this study, we present results that address this cycle of the process. However, for a
complete analysis, we recommend three pairwise IRR checks. First, IRR should be
checked between rater one and the automated code to ensure proper classifier rules.
Next, IRR should still be established between two human raters as is typical in com-
mon IRR processes to achieve good conceptual validity. As a final check, IRR testing
should check reliability between the second rater and the classifier to make sure all
human and computer raters agree on a concept.

Merging Training Data. If the test result is not satisfactory (i.e., the rho is above the
alpha level, typically 0.05), the test items are moved to the training data set. The
training data set contains all tested items. The user could review each item in the
training set and the coding from the human and the machine.

Checking Disagreement. nCoder automatically checks the disagreement between the
human coding and machine coding. The disagreed items are displayed to the user for
investigation.

Refining Codes. The user may remove the disagreements by removing, adding, or
refining regular expressions, resulting in changes of the regular expression list.

Updating Training Data. Each time the regular expression list is changed, the con-
cept is re-coded by the machine and the machine codes in the training data set is
updated. At the same time, the disagreements are changed. The refining-updating cycle
may continue until the minimum number of disagreements is reached. Zero disagree-
ment is possible but it may sometimes involve complicated regular expressions.

Preparing Output. The testing-refining cycle may be continued until the rho values
for all concepts are less than 0.05. The output of nCoder will be the original data with
added new concept columns containing machine coded values.

5 Kappa, Shaffer’s Rho, Sample Size and Recall

To ensure reliability, nCoder relies on kappa values and Shaffer’s rho. In this section,
we will review concepts related to kappa and take a mathematical look at Shaffer’s rho.
At the end of this section, we will address an unsolved problem in nCoder: when the
base rate (i.e., the ratio of the occurrences to the data size) of a code is low, the coding

nCoder+: A Semantic Tool for Improving Recall of nCoder Coding 47

recall of the concept could be low or unacceptable, even if the kappa has been shown to
be statistically significantly above a threshold with rho.

Kappa is a statistical measure proposed by Cohen in 1960 [15], which has been
used widely as an inter-rater reliability measurement [6]. It measures the degree of
agreement between two or more coders controlling for chance agreement. In the case of
nCoder, we may consider items coded by a human rater as “1”s as “human positives”
and “0”s as “human negatives”. The machine coded “1”s and “0”s are “machine
positives” and “machine negatives”, respectively. For each concept, an item may have
a pair of human-machine coding as “1-1”, “1-0”, “0-1”, or “0-0”. If we take the human
coding as actual truth and computer coding as prediction, kappa becomes a measure of
the performance of the machine coding. Following the notions in literatures, we denote
the proportion “1-1” by tp (true positive), “1-0” by fn (false negative), “0-1” by fp (false
positive), and “0-0” by tn (true negative). Kappa is often written as

j ¼ p0 � pc
1� pc

;

where p0 ¼ tpþ tn is the total agreement between the human and the machine, and
pc ¼ tpþ fpð Þ tpþ fnð Þþ tnþ fpð Þ tnþ fnð Þ is the chance agreement between the human
and the machine.

nCoder aims at minimizing the number of items a human rater has to code in a test
set for the purpose of establishing reliability and providing a warrant for validity. That
is, nCoder was designed to help researchers use the smallest sample size possible when
establishing inter-rater reliability. The question is, how do we know that the machine
coding is good enough? In other words, how much data does a trained human rater
need to code in order to establish that the machine could reliably code untested data
with a high enough level of agreement with a trained human rater? Shaffer and his
colleagues provided the rho measure to answer this question. Roughly speaking, a
rho <0.05 in nCoder means that we would be wrong less than five percent of the time if
we concluded that if both the human rater and the machine were to code all the data,
not just the sample or test set, that agreement between their ratings would be greater
than the threshold of interest. Details about the computations of rho could be found in
Shaffer [1] and Eagan et al. [6].

When a code has a low base rate, it is often practical to check all machine coded
occurrences and get a low false positive rate by refining the regular expressions. How-
ever, checking false negative is often impractical. For example, if the base rate is about
5% and the data size is 10,000. Then the user may go through 500 items with machine
coded “1”s and see if any item is a false positive. However, to check the false negative,
the user would need to check 9,500 items. Thus, nCoder users may often end up with a
coding which is of very few, if any, false positives but potentially a high false negative
rate. To illustrate this issue, let’s consider the situation when the false positive rate is
zero. In this case, the false negative rate is a function of true positives and the kappa:

fn ¼ 2tp 1� tpð Þ 1� jð Þ
2tpþ 1� 2tpð Þj :

48 Z. Cai et al.

Since when there are zero false positives, tp ¼ 0 implies j ¼ 0, the above equation
holds only for tp[0.

Figure 2 shows the curves of the false negative rate as a function of true positives
for kappa = 0.65, 0.80 and 0.90, respectively. As an example, let’s look at case when
kappa = 0.65 (the top curve in blue). The curve shows that the maximum false negative
rate is about 18% when the true positive rate is around 40%. When the true positive rate
is very low, the false negative is also low. For example, for kappa = 0.65, when true
positive rate is 5%, the false negative rate is also about 5%. Both rates are low.
However, the false negative rate is about the same as true positive rate. In other words,
the number of occurrences reported by the machine could be the same as those missed
by the machine.

Recall is a commonly used measure to indicate the capability of an algorithm or
classifier in finding targeted items. Mathematically speaking, recall is the rate of true
positives to the total truth, which can be written as:

recall ¼ tp
tpþ fn

:

When the false positive rate is zero and tp[0, for a given kappa, recall is a linear
function of true positives:

recall ¼ 2 1� jð Þ
2� k

tpþ j
2� j

:

0.000

0.050

0.100

0.150

0.200

0.
01

0.
06

0.
11

0.
16

0.
21

0.
26

0.
31

0.
36

0.
41

0.
46

0.
51

0.
56

0.
61

0.
66

0.
71

0.
76

0.
81

0.
86

0.
91

0.
96

FA
LS

E
N

EG
A

TI
V

E
R

A
TE

TRUE POSITIVE

kapp=0.65 kappa=0.8 kapp=0.9

Fig. 2. False negative rate as a function of true positive and kappa when false positives = 0
(Color figure online)

nCoder+: A Semantic Tool for Improving Recall of nCoder Coding 49

Figure 3 shows the recall lines as linear functions of true positives for kappa =
0.65, 0.80 and 0.90, respectively. When tp is small, the recall can be approximated by
j

2�j. For example, when tp is small and kappa = 0.65, the recall is about 0.48. That
means, when tp is small, a 0.65 kappa could not even guarantee a 50% recall.

6 nCoder+: Adding a Semantic Component to nCoder

To help improve recall when using nCoder, we built an add-on tool, called “nCoder+”,
that allows researchers to easily find false negatives, i.e., targets missed by nCoder. The
tool is briefly described below and a real data example is used to demonstrate the tool’s
performance in the next section. In the final discussion section, we will talk about
integrating this tool as a component into nCoder.

The core of nCoder+ is an LSA (Latent Semantic Analysis) component. LSA is a
way to represent the “meaning” of words by vectors. Readers who are not familiar with
LSA could refer to Landaure et al. [16]. The cosine between two vectors are often used
to measure the similarity between two words. For a given word or phrase, the words
with highest cosine values to the given word or phrase are called “nearest neighbors”.
Nearest neighbors make it possible to automatically find the most likely missing items.

Figure 4 shows a screenshot of nCoder+. On the left panel, there is a dropdown
menu that allows user to select an LSA vector space. Below that is the “Keys” box that
displays the regular expressions used to code the data. The “Words” box lists the
neighbors to the keywords, together with the semantic cosine values as a measure of
similarity of a neighbor to the keywords. The “neighbors” are sorted by similarity, so
that the nearest neighbors are on the top of the list. The “Report” box below the
neighbor list shows the result of each step. The table on the right panel shows the data
under investigation. The box above the data table shows the content of any selected cell
in the data table. The “Add Key” box is a place for users to enter new regular
expressions. The “Test” button is used to check the validity of regular expressions. The
“Update” button is used to add a new regular expression to the list.

0.000

0.500

1.000

0.
01

0.
06

0.
11

0.
16

0.
21

0.
26

0.
31

0.
36

0.
41

0.
46

0.
51

0.
56

0.
61

0.
66

0.
71

0.
76

0.
81

0.
86

0.
91

0.
96

R
EC

A
LL

TRUE POSITIVE

kapp=0.65 kappa=0.8 kapp=0.9

Fig. 3. Recall as linear a function of true positives for given kappa

50 Z. Cai et al.

nCoder+ starts from loading the regular expressions used in nCoder coding of a key
concept and a csv data file with 3 columns: an id column, a text column and a binary
code column. A “1” in the code column indicates that the text on the row contains the
specific key concept.

After the regular expressions and the csv data file are loaded, nCoder+ extracts
words from the text column and form a vocabulary. The words that match any one of
the regular expressions are then identified as “keywords”. For each vocabulary word,
the LSA cosine values between this word and each of the keywords are computed. The
maximum of these cosine values is taken as the similarity of the word to the keywords.
Of course, if the word itself is a keyword, the similarity will be 1. The vocabulary
words are then sorted by the similarity so that the nearest neighbors are on the top of
the sorted word list. The word list is then displayed in the “Words” box with keywords
excluded.

A user reviews the nearest neighbors from the top to see if there is any word that is
highly associated with the key concept. If a word is identified, the user may click on it.
All text items in the data with code “0” that contain the selected word will appear in the
data table. The user may check the text items in the table and see if there are any
missing items that should be coded.

When missing items are identified, the user may compose a new regular expression
based on the selected word. To check whether the regular expression is well composed,
the user may press the “Test” button. Then text items that match the new regular
expression will be displayed in the data table. The user may revise the regular
expression until it accurately flags the missing items.

Fig. 4. Screenshot of nCoder+

nCoder+: A Semantic Tool for Improving Recall of nCoder Coding 51

Once the regular expression passes the test, the user may click on the “Update”
button to add the regular expression to the regular expression list. The matched text
items will be coded as 1. The selected word will be added into keywords and removed
from the displayed word list. The similarity of the words will be re-computed, re-sorted
and displayed as neighbors to the new keywords. This procedure is repeated until the
user cannot find any new words in the word list that could be used to find possible
missing items.

7 nCoder+ Validation

The “Primary Debates 2016” dataset was used to test the tool. The dataset contains
transcripts of every debates held during the 2016 primary season. The scripts were split
into 23,714 utterances. One of the co-authors ran nCoder to code the concept “Envi-
ronmental Issues”, ended up with the regular expressions shown in Table 1.

Using base rate inflation of 0.20, the concept of “Environmental Issues” was vali-
dated with a kappa of 0.8 and a Shaffer’s rho 0.01. That guarantees that the coded values
could have at least 0.65 kappa with a human rater if the human rater had rated the whole
data set. The final data set flagged 120 utterances that contain the key concept. Another
co-author checked all 120 utterances and found that the false positive rate was 0.
However, the recall was not checked because that would mean to go through the rest of
the 23,596 utterances and see if there are any more utterances that contain the key
concept. With zero false positive, 0.65 kappa, and true positive = 120/23, 596 = 0.5%,
the corresponding recall is about 0.5, which means that there could be as many as 120
items containing the “Environment Issues” that were not coded as “1”.

The data and the regular expressions were loaded to nCoder+. A set of keywords
were extracted from the regular expressions and the rest of the words were displayed in
the order of semantic similarity to the keywords. The first new keyword we identified
was “emissions”. The tool showed up 7 items containing “emissions” that should be
but were not coded as “1”. The regular expression “\bemissions” was added to the
regular expression list and 7 new items were added to true positives. Repeating this
process, we identified 8 new keywords as shown in Table 2. nCoder+ showed 175

Table 2. Keywords, added regular expressions and additionally identified items

Neighbor word Items involved RegEx Items coded

Emissions 7 \bemissions 7
Clean 39 \bclean.*(water|power|electric|energy) 23
Gases 1 \bgases 1
Gas 34 (\bgas.*energy)|(\benergy.*gas) 4
Waste 21 \bwaste.*water 2
Coal 60 (\buse of coal)|(\bcoal\b.*(energy|clean)) 2
Carbon 4 \bcarbon 4
Solar 9 \bsolar 9
Total 175 52

52 Z. Cai et al.

items containing these 8 new keywords. With 8 carefully generated regular expres-
sions, 52 new items were added to the true positives. Thus, assuming there were a total
of 240 positive items, the recall is increased from 50% to 172/240 = 72%.

8 Discussions

nCoder is a tool that helps both qualitative and quantitative researchers in coding text
data. The regular expression based automatic coding is simple and effective. When the
data size is large, it is usually hard to define a complete set of regular expressions that
represent a certain concept, which can result in low coding recall. This paper provided
an effective tool, nCoder+, to find missing items and thus improve recall. The current
nCoder+ tool is just a prototype for validating the idea. There are multiple ways to
integrate this tool into nCoder. One way is to add it as a post process component and
use it in the way we used in this paper. The other way is to integrate it as a component
in the nCoder’s testing process (see Fig. 1). At the nCoder testing step, a test set is
sampled from data that has not been exposed to the researcher. A proportion (e.g.,
20%) of the test items are sampled from the data with machine coded “1”s and the rest
are randomly sampled from the remaining data. To make use of the semantic neighbors,
a proportion of the “0” items could be those that contains nearest neighbors of the
keywords. Thus, the test set contains three types of items: “1” items, “near neighbor”
items and “remote neighbor” items. The “1” items will help determine the true positive;
the “near neighbors” will help improve recall; and the “remote neighbors” will help
determine the true negative.

This paper only considered integrating the idea of semantic neighbors into nCoder.
Other NLP methods may also be useful to further improve nCoder. For example, topic
modeling could help researchers to find meaningful concepts that researchers may
otherwise miss. Neural network algorithms may also help in inferring concepts from
given keywords. Our future work will be continuously incorporating latest advances in
natural language processing and providing researchers with better coding tools.

Acknowledgements. The research was supported by the National Science Foundation (SBR
9720314, REC 0106965, REC 0126265, ITR 0325428, REESE 0633918, ALT-0834847, DRK-
12-0918409, 1108845; DRL-1661036, 1713110; ACI-1443068), the Institute of Education
Sciences (R305H050169, R305B070349, R305A080589, R305A080594, R305G020018,
R305C120001), the Army Research Lab (W911INF-12-2-0030), and the Office of Naval
Research (N00014-00-1-0600, N00014-12-C-0643; N00014-16-C-3027), the Wisconsin Alumni
Research Foundation, and the Office of the Vice Chancellor for Research and Graduate Edu-
cation at the University of Wisconsin-Madison. The opinions, findings, and conclusions do not
reflect the views of the funding agencies, cooperating institutions, or other individuals.

References

1. Shaffer, D.W.: Quantitative Ethnography. Cathcart Press, Madison (2017)
2. Chi, M.T.H.: Quantifying qualitative analyses of verbal data: a practical guide. J. Learn. Sci.

6, 271–315 (1997)

nCoder+: A Semantic Tool for Improving Recall of nCoder Coding 53

3. Saldaña, J.: The Coding Manual for Qualitative Researchers (2014). https://doi.org/10.1007/
s13398-014-0173-7.2

4. Glaser, B.G., Strauss, A.L.: The Discovery of Grounded Theory: Strategies for Qualitative
Research. Aldine Transaction, New Brunswick (1967)

5. Charmaz, K.: Constructing Grounded Theory. SAGE, London (2006)
6. Eagan, B.R., Rogers, B., Serlin, R., Ruis, A.R., Irgens, G.A., Shaffer, D.W.: Can we rely on

IRR? testing the assumptions of inter-rater reliability. In: CSCL 2017 Proceedings, pp. 529–
532 (2017)

7. Blei, D.M., Edu, B.B., Ng, A.Y., Edu, A.S., Jordan, M.I., Edu, J.B.: Latent Dirichlet al-
location. J. Mach. Learn. Res. 3, 993–1022 (2003). https://doi.org/10.1162/jmlr.2003.3.4-5.
993

8. Hu, Y., Boyd-Graber, J., Satinoff, B.: Interactive topic modeling. In: Proceedings of the 49th
Annual Meeting Association for Computational Linguistics Human Language Technologies,
pp. 248–257 (2011)

9. Marquart, C.L., Swiecki, Z., Eagan, B., Shaffer, D.W.: ncodeR (Version 0.1.2) (2018)
10. Eagan, B.R., Rogers, B., Pozen, R., Marquart, C., Shaffer, D.W.: rhoR: Rho for inter rater

reliability (Version 1.1.0) (2016). https://cran.r-project.org/web/packages/rhoR/index.html
11. Gašević, D., Joksimović, S., Eagan, B., Shaffer, D.W.: SENS: network analytics to combine

social and cognitive perspectives of collaborative learning. Comput. Hum. Behav. 92, 562–
577 (2019)

12. Cai, Z., Pennebaker, J.W., Eagan, B., Shaffer, D.W., Dowell, N.M., Graesser, A.C.:
Epistemic network analysis and topic modeling for chat data from collaborative learning
environment. In: Proceedings of the 10th International Conference on Educational Data
Mining, pp. 104–111 (2017)

13. Sullivan, S., et al.: Using epistemic network analysis to identify targets for educational
interventions in trauma team communication. Surg. (United States) 163, 938–943 (2018).
https://doi.org/10.1016/j.surg.2017.11.009

14. Shaffer, D.W., Ruis, A.R.: Epistemic network analysis: a worked example of theory-based
learning analytics. In: Handbook of Learning Analytics Data Mining, in press (2017)

15. Cohen, J., Cohen, J.: A coefficient of agreement for nomial scales. Educ. Psychol. Meas. 20
(1), 37–46 (1960). https://doi.org/10.1177/001316446002000104a coefficient of agreement
for nomial scales. Educ. Psychol. Meas. 20, 37–46 (1960). https://doi.org/10.1177/
001316446002000104

16. Landauer, T., McNamara, D., Dennis, S., Kintsch, W.: Handbook of Latent Semantic
Analysis (2007)

54 Z. Cai et al.

